

University of
 Twente

 Faculty of Electrical Engineering,
 Mathematics & Computer Science

Design and Realization of a Safe Control
System for a Parallel Manipulator

M. Eglence

M.Sc. Thesis

Supervisors: prof. dr. ir. J. van Amerongen

dr. ir. T.J.A. de Vries
dr. ir. J.F. Broenink
ir. B.J. de Kruif

 June 2003

Report Number
010CE2003

Control Laboratory
Faculty of Electrical
Engineering,
Mathematics &
Computer Science

University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands

ii

iii

Abstract

The Control Laboratory at University of Twente has purchased
an Imotec xyz-manipulator. The manipulator is delivered with
an open operating system. This thesis treats the design and
realization of a safe guarded controller system for the Imotec
manipulator. Safety issues are discussed to make the
manipulator operate safely for doing research experiments by
students and staff. This concerns safety of the manipulator
itself and of the people working with it. The first experiments
will be concerned with the research on Learning Feed Forward
Control (LFFC).

The safe guarded controller system is implemented as a Multi
Agent Controller (MAC) system. The controller is tested in
simulation (20-Sim) and has proven to work correctly.

The designed controller has largely been implemented on the
real system and has been found to work according to
expectations. For a slow, large stroke movement, a maximum
tracking error of 250 [µm] was found at moments of velocity

reversal; otherwise, the max tracking error amounted 100 [µm].

Because of time constraints, the experiments with LFFC have
not been carried out.

A path generator tool has been developed that can be used for
creating path for manipulators in general. It creates curves and
straight movements in (x,y,z). With the tool a reference motion
can be given up in segments from which afterwards a file is
created which holds the reference points for the sample times.

iv

v

Acknowledgements

Thanks go out to a lot of people who made it possible for me to
graduate. First of all, I would like to thank my family for their
never-ending support and encouragement.

I would like to thank my supervisors who gave me the
opportunity to work on this interesting thesis. Especially I
would like to thank Theo de Vries for his valuable guidance
and tips during the thesis, the good time we had at Imotec and
for the great fun we had with testing the robot.

Herman, Jan, Peter and Richie thanks for the good time and
interesting discussions at Imotec.

Job van Amerongen I would like to thank for the opportunity to
graduate at the Control Laboratory.

Last but certainly not least I would like to thank the lady that
made my life so much nicer by stepping in to it. Sabire, thanks
for your love and encouragement.

Enschede, June 2003

M. Eglence

vi

vii

Table of contents

1 INTRODUCTION .. 1

1.1 BACKGROUND .. 1
1.2 LEARNING FEED-FORWARD CONTROL ... 1
1.3 THE IMOTEC MANIPULATOR ... 2
1.4 THE ASSIGNMENT ... 4
1.5 THESIS STRUCTURE .. 4

2 DESIGN CONCERNING SAFETY ISSUES... 5

2.1 INTRODUCTION... 5
2.2 MALFUNCTIONING OF THE MANIPULATOR .. 5

2.2.1 CHECKING THE MECHANICAL STRUCTURE... 5
2.2.2 CHECKING THE POWER SUPPLY ... 12
2.2.3 CHECKING THE LINEAR MOTORS.. 12
2.2.4 CHECKING THE MOTOR AMPLIFIERS .. 12
2.2.5 CHECKING THE INTERFACE CARDS .. 12
2.2.6 CHECKING THE COMPUTER SYSTEM... 13

2.3 FAULTS BY THE ENVIRONMENT... 14
2.4 APPLIED CHECKS AND THEIR RESPONSES .. 14

3 IMPLEMENTATION OF THE SAFE CONTROLLER SYSTEM... 15

3.1 INTRODUCTION... 15
3.2 POSSIBLE IMPLEMENTATION METHODS OF THE SAFE CONTROLLER SYSTEM 15
3.3 THE CONCEPT OF MAC SYSTEMS ... 16

3.3.1 CONTROLLER AGENTS ... 16
3.3.2 SENSOR AGENTS.. 17
3.3.3 ACTUATOR AGENTS... 17

3.4 COORDINATION OF AGENTS .. 17
3.5 MAC SYSTEM FOR THE MANIPULATOR... 18

3.5.1 STARTUP AGENT.. 19
3.5.2 ALARM AGENT .. 20
3.5.3 GUARDEDEMERGENCY AGENT .. 20
3.5.4 GUARDEDSTANDARD AGENT .. 20
3.5.5 MODESWITCHCONTROLLER AGENT .. 21

3.6 TOTAL OVERVIEW OF THE MAC SYSTEM ... 23

4 PATH GENERATION... 25

4.1 INTRODUCTION... 25
4.2 TOOLS FOR PATH SPECIFICATION .. 25
4.3 THE PATH GENERATOR .. 26
4.4 TRAPEZOIDAL PROFILE ALGORITHM ... 28
4.5 S-CURVE PROFILE ALGORITHM ... 30
4.6 STRAIGHT LINE MOVEMENT.. 32
4.7 ARC MOVEMENT... 33
4.8 ASSIGNING THE SAMPLE REFERENCE POINTS TO THE ARC MOVEMENT 34

5 SIMULATIONS AND EXPERIMENTS .. 37

viii

5.1 INTRODUCTION... 37
5.2 DESIGN OF DEMONSTRATOR PATH .. 37
5.3 THE 20-SIM MODEL OF THE MANIPULATOR. .. 38
5.4 VERIFYING THE STANDARD MODE IN SIMULATION.. 39
5.5 VERIFYING THE ERRORGUARD... 41
5.6 VERIFYING THE EMERGENCY SITUATION IN SIMULATION.. 42
5.7 VERIFYING THE ALARM MODE IN SIMULATION.. 43
5.7 EXPERIMENTAL RESULTS.. 44

6 CONCLUSIONS AND RECOMMENDATIONS ... 47

6.1 CONCLUSIONS .. 47
6.2 RECOMMENDATIONS .. 48

APPENDIX A: WORKING PRINCIPLE AND DRIVE OF LINEAR MOTOR. .. 49

APPENDIX B: HARDWARE OVERVIEW OF THE MANIPULATOR.. 51

APPENDIX C: AN INTRODUCTION TO XML ... 53

APPENDIX D: CONTROLLER SETTINGS .. 57

APPENDIX E: MANIPULATOR MAC SYSTEM CODE.. 59

BIBLIOGRAPHY.. 113

ix

x

Introduction

1

1 Introduction

1.1 Background

At the Control Engineering Laboratory of the University of Twente (UT) research is done on
Mechatronic Systems in general and in particular on the role of the controller in it. An ongoing
project is concerned with Learning Feed-Forward Control (LFFC) [De Kruif, 2003]. To carry
out experiments for this research, an xyz-manipulator with parallel kinematical configuration has
been purchased by the UT. The manipulator has been developed and built by the company
Imotec, which is also a sponsor of the research. The manipulator has been delivered with an
open controller system, in order to make it possible to implement advanced control and
identifications algorithms. The first research on the manipulator will be concerned with the
application of modern function approximators in closed loop control. When doing research,
people will work closely with the manipulator. Therefore, safety is an important issue. The
manipulator should operate in a safe manner without causing danger for people working with it
and without causing damage to itself.

1.2 Learning Feed-Forward Control

For obtaining good performances with classical control systems, the parameters of the controlled
plant need to be known well. Not knowing the plant parameters accurate enough result in not
entirely knowing the dynamics of the plant. In many control problems, the plant is given as a
model of which the parameters are not known exactly. The reasons for this are various, for
instance:

� Low-precision production processes make the fabricated part to differ from the

specification.
� Manufacturing tolerances lead to a spread in dynamic behaviour.
� Complexity of the plant makes parameter estimation difficult.
� Changes in plant characteristics as time proceeds.
� Non-linear effects like friction and cogging.

In many applications the goal is to come to a high precision servo system with low price
components. In these situations the classical feedback controller demerits. However, the
principle of LFFC can offer a solution [Velthuis, 2000],[Starrenburg et al, 1995]. In figure 1.1 a
control loop is given in which a learning component is included in the feed-forward path. In this
case, this component is a function approximator (FA).

Fig. 1.1 A control loop with function approximator.

Introduction

2

The function approximator realizes an input-output mapping gained by experience. The
mapping summarizes the examples by a function. This function for instance can be the force that
is needed to compensate for the friction loss depending on the velocity of the mechanical setup.
In the depicted control loop, the feedback controller is needed for stability of the closed loop
system and to present samples for the learning mechanism of the function approximator. The
function approximator approximates the inverse dynamics of the plant based on the output of the
feedback controller. After learning, it compensates for the non-linear state dependent behavior
of the plant.

1.3 The Imotec manipulator

The Imotec manipulator, of which a sketch is given in figure 1.2, is a simplified Stewart
platform with three degrees of freedom namely x, y and z. It is driven by three Tecnotion linear
motors in vertical direction. For working principle and drive of linear motors, see Appendix A.
For an overview of the manipulator hardware see Appendix B.

 Fig. 1.2 The Imotec xyz- manipulator.

Introduction

3

A set of arms in parallelogram construction attached to the translators of the motors, holds a
platform, which is the end-effector of the manipulator. The joints of the arms allow movement
only in φ and θ direction, whereas the translators only move in z direction (see figure 1.3). This
altogether results in an x, y, z motion of the platform. The parallelogram construction of the arms
restricts rotational movements of the platform. The three arms together also keep the platform in
the horizontal plane.

The manipulator has a safe work area that is shaped as a cylinder with radius 200 [mm] and
height 250 [mm]. Although the end-effector of the manipulator can exceed the dimensions of the
cylinder, it is not recommended because this will cause overloading of the leaf springs from the
joints. Specifications of the manipulator are:

� Max Payload 5 [kg]
� Max Speed 1 [m/s]
� Max Acceleration 30 [m/s2]
� Max Stroke Lin. Motor 520[mm]

The manipulator is given in its functional blocks in figure 1.4. The setup can be divided in three
major parts:

� The computing system
� The electrical circuitry and components
� The mechanical setup.

φi

θi zi

arm

translator

Fig. 1.3 Joint motion of the parallelogram constructed arms.

Introduction

4

1.4 The assignment

The electrical circuitry and mechanical setup of the manipulator have been realized and tested.
To become operational, the manipulator’s computing system needs to be programmed. This
means that the right actions need to be taken depending on the signals from the electro-cabinet
and on user input. The objective of the assignment is to develop and realize a safe control
system. This incorporates the following points:

9 Design and realization of a safeguard system to make it possible to carry out experiments

with the manipulator without danger for the environment and for the setup itself.

9 Design of a generally applicable tool for path specification of manipulators.

9 Implementation of the path specification tool for the parallel kinematical xyz-

manipulator, including setpoint generation.

9 Implementation of a relatively simple closed loop control system in which a modern

function approximator is integrated.

1.5 Thesis Structure

After this introduction, in chapter 2 safety issues concerning the manipulator will be discussed.
In chapter 3 these safety issues will be implemented for the Imotec manipulator. In chapter 4,
path generation in general for manipulators will be discussed. The path generator specific for the
xyz-manipulator will also be developed in this chapter. In chapter 5 simulations and
experimental results will be discussed. Finally in chapter 6, the conclusions and
recommendations are presented.

Fig. 1.4 The manipulator in its functional blocks.

Design concerning safety issues

5

2 Design concerning safety issues

2.1 Introduction

Safety concerns two major aspects in manipulators. First and most important is the safety of
people operating and working with the manipulator. Second, the manipulator should not damage
itself by some motion. Usually manipulators are placed in industrial environments where people
do not work closely nearby the manipulator. In case of the Imotec manipulator, people will work
close to the manipulator when doing research. Therefore considerable attention will be paid to
human safety. The manipulator is used for doing research in the field of control engineering. It
is imaginable that a bad controller setting (unstable) can cause unsafe situations. This chapter
deals with the measures that can be taken to make the manipulator operate safely. There are two
major causes that can lead to dangerous situations in case of the manipulator.

� Malfunctioning of a component of the manipulator itself.
� Irresponsible behavior of people in the environment.

First the possible faults of the manipulator itself will be discussed and then faults that can arise
by the environment. Measures to handle these situations will also be discussed.

2.2 Malfunctioning of the manipulator

The Imotec manipulator consists of six basic parts, which can all lead to faults:

� The mechanical structure
� The linear motors
� The motor amplifiers
� The power supply
� The interface cards
� The computer system

These parts will be discussed subsequently in the next sections.

2.2.1 Checking the mechanical structure

The mechanical structure of the manipulator is difficult to check automatically during operation.
A method, which is the most feasible in general, is to compare the response of the manipulator
with a proper mathematical model [Van De Mast, 1992]. In case of the Imotec manipulator this
is not applicable for the moment because the position of the end-effector is not measured. Only
the positions of the translators are measured by means of the linear encoders. For instance, if an
arm would break, this will not influence the position of the translator much, whereas the
platform (end-effector) will be positioned totally different. For the moment, no check for
mechanical structure integrity is done. A feasible measure is to avoid situations that can cause

Design concerning safety issues

6

the mechanical structure to break apart. This can be done by assuring that the manipulator
operates in its safe work area. The encoder readings from the linear motor can be used to
determine the position of the platform. This means that the forward kinematics of the
manipulator has to be known. The Imotec manipulator has complex forward kinematics due to
its parallel configuration. However, the inverse kinematics can be derived easily. When z1, z2
and z3 are the positions of the translators in z direction, then the following holds:

2 2 2
1 1 1

2 2 2
2 2 2

2 2 2
3 3 3

() ()

() ()

() ()

o

o

o

z l x x y y z z

z l x x y y z z

z l x x y y z z

= − − − − − + +

= − − − − − + +

= − − − − − + +

 [2-1]

Where l is the known length of the arms and x, y, z are the coordinates of the moving platform.
x1 is the x position of the translator 1 and y1 its y position. Note that the translators only move in
z direction, therefore xi and yi are fixed and known. zo is the initial height of the platform in z
direction when the translators are all in the bottom position (zi = 0, i = 1,2,3) . zo is calculated as:

2 2
oz l r= − [2-2]

Where r is the known radius of the circle in which the translators are aligned, see figure 2.1.

x

y

z

r

Translator 1

Translator 2Translator 3

Fig. 2.1 Orientation and setup of the translators.

Platform

(x1, y1)

(x2, y2) (x3, y3)

Design concerning safety issues

7

Equations [2-1] represents the inverse kinematics of the manipulator. We are interested in the
forward kinematics, i.e., we wish to regard [2-1] as three simultaneous equations with three
unknowns, (x, y, z). However, this problem cannot be solved explicitly because of its
complexity; the root function in [2-1] makes this hard. Therefore, an approximation is done [De
Kruif], to remove the root function. First a transformation is done from Cartesian coordinates to
cylindrical coordinates by using the following coordinate change:

sin()
cos()

x p
y p
z z

φ
φ

=
=
=

 [2-3]

Where p is the distance between the origin and the position of the platform in the x-y plane. As
stated earlier the manipulator has a safe work area of cylindrical shape with radius 200 [mm]
and height 250 [mm]. Therefore the distance p may not exceed 200 [mm]. Hence, we can
reformulate the safety check as solving [2-1] and [2-3] for p and checking it for the given limit.
Using the coordination transform of [2-3] in [2-1] results in:

2 2 2
1

2 2 2
2

2 2 2
3

2 cos()

22 cos()
3
42 cos()
3

o

o

o

z l r p pr z z

z l r p pr z z

z l r p pr z z

φ

φ π

φ π

= − − − − + +

= − − − − + + +

= − − − − + + +

 [2-4]

We introduce an intermediate function:

2 2 2(,) 2 cos()f p l r p prφ φ= − − − [2-5]

In [2-4] the root function f(p,φ) is still present. A plot thereof is given in figure 2.2.

Fig. 2.2 A plot of the root function, 2 2 2(,) 2 cos()f p l r p prφ φ= − − − .

Design concerning safety issues

8

From the plot can be seen that f(p,φ) has its minimum and maximum on the line where p = pmax
= 200 [mm]. With l = 541[mm], r = 300[mm] and [,]φ π π= − given, we can derive:

0.20659 (,) 0.53167f p φ≤ ≤ [2-6]

f(p,φ) can be converted into f(x) by stating:

(,) ()f p f x xφ = [2-7]

with

2 2 2 2 cos()x l r p pr φ= − − − [2-8]

and

2 2
min max[,] [0.20659 ,0.53167] [0.0427,0.2827]x x x∈ = = [2-9]

A plot of f(x) is given in figure 2.3.

By doing a linearization, f(x) can be approximated. The approximation is given by the dashed
line in figure 2.3. This line is described by:

max min
min min

max min

() ()() () () ()f x f xf x f x f x x x
x x

−
≈ = + −

−
 [2-10]

Fig. 2.3 The root function f(x); the dashed line is the linearization
of it.

Design concerning safety issues

9

And with the known values filled in:

2 2 2() 1.355 2 cos() 0.149f x l r p pr φ = − − − +  [2-11]

Substituting equation [2-10] as approximation for f(p,φ) into equations [2-4] gives:

2 2 2
1

2 2 2
2

2 2 2
3

1.355 2 cos() 0.149

21.355 2 cos() 0.149
3
41.355 2 cos() 0.149
3

o

o

o

z l r p pr z z

z l r p pr z z

z l r p pr z z

φ

φ π

φ π

 ≈ − − − − + + − 
 ≈ − − − − + + + −  
 ≈ − − − − + + + −  

 [2-12]

Adding up the equations in [2-12] results in (note that the cosine parts add up to zero):

2 2 2
1 2 3 3 1.355() 3 3 0.447oz z z l r p z z+ + ≈ − ⋅ − − + + − [2-13]

From which it follows that:

2 2 2 1 2 31.355() 0.149
3o

z z zz z l r p + +
+ ≈ − − + + [2-14]

Combining the first equation of [2-12] with [2-14] gives:

2 2 2 2 2 2 1 2 3
1 1.355 2 cos() 1.355()

3
z z zz l r p pr l r pφ + + ≈ − − − − + − − +  [2-15]

From which for z1 is obtained:

2 3
1 4.065 cos()

2
z zz pr φ +

≈ + [2-16]

Equally for z2 the following can be derived:

1 3
2

24.065 cos()
3 2

z zz pr φ π +
≈ + + [2-17]

The equations [2-16] and [2-17] can be generalized into:

cos()
2cos()
3

A

A

α φ

β φ π

=

= +
 [2-18]

For which a general solution can be found with the use of Maple as:

2 24 4 4
3 3 3

A α β αβ= + + [2-19]

Design concerning safety issues

10

With 4.065A pr= , 2 3
1 2

z zzα +
= − and 1 3

2 2
z zzβ +

= − , the following expression is found for

the approximation of the radius:

2 2 2
1 1 2 1 3 2 2 3 3

0.246
apprp z z z z z z z z z

r
= − − + − + [2-20]

In figure 2.4 a plot is given of the actual radius of the platform and the approximation of it
according to [2-20].

From the plot can be seen that the approximation that is made, varies between 175 [m] and 220
[mm] depending on φ for p = 200 [mm]. The error that is made is given in figure 2.5.

The threshold value of the safety system to take action should be set at 170 [mm]. The platform
then can move up to a radius of 200 [mm] depending on φ.

Fig. 2.4 Approximation of the radius according to [2-20].

Fig. 2.5 The error that is made with the approximation of the radius
according to [2-20].

Design concerning safety issues

11

Also the z direction of the platform has to be checked to ensure that the platform does not
exceed the cylindrical work area. The height of the platform has to be determined the most
accurate in the position where it is at the edge of the radius of his work area, that means

200p ≈ [mm] and 0z ≈ or 250z ≈ [mm]. In this positions the spring leafs of the joint are
bended the most.

With equation [2-13] and the approximation for the radius [2-20] the following can be stated:

2 2 2
1 2 3 3 1.355() 3 3 0.447appr oz z z l r p z z+ + = − ⋅ − − + + − [2-21]

With the known values filled in, this results in the approximation for checking the z direction of
the platform:

2 2 21 2 3 1.355() 0.149
3appr appr o

z z zz l r p z+ +
= + − − − + [2-22]

In figure 2.6 a plot is given of the actual z-position of the platform and the approximation of this
position according to [2-22].

From the plot can be seen that the approximation for z-position makes an under-estimation. The
error that is made is given in figure 2.7.

Fig. 2.6 Approximation of the z-position according to [2-22].

Fig. 2.7 The error that is made with the approximation of the the z-
position according to [2-22].

Design concerning safety issues

12

In the error plot can be seen that in the situation that p is zero, that means the platform is in the
centre of his work area circle, the error is the largest and has a value of 26 [mm]. In the situation
that the platform is at the edge of the safe work area (p = 200 [mm]), the error is 16 [mm]. That
means that if the threshold value of the safety system is set to 250 [mm], the platform can move
up to a height of 266 [mm] in the situation that p = 200 [mm]. Therefore the threshold value
should be set at 234 [mm]. The platform cannot move above 250 [mm] then.

2.2.2 Checking the power supply

The Imotec manipulator is fed via an Uninterruptible Power Supply (UPS). This UPS is able to
supply power to the manipulator for at least 10 seconds in case of a power break down from the
supplier net. This should give time enough for bringing the end effector to a safe situation and
shutting down the computing system. In case of a power down situation, the computing system
is alarmed via a relay that checks whether the power supply from the net is present. This should
trigger an appropriate control action.

2.2.3 Checking the linear motors

Linear motors based on permanent magnets are robust and reliable because no transmissions are
needed to transform in a linear motion. However, the linear motor still can malfunction. For
instance, the coils of the translators can heat up too much. Therefore the translators are equipped
with thermal resistors to measure the temperature. This temperature can be checked by the
computing system and in case of overheating measures can be taken. Another failure that can
occur is that the linear motor gets stuck. This can be detected by a growing tracking error and
measures can be taken.

2.2.4 Checking the motor amplifiers

The used amplifiers for the Imotec manipulator have safety checks built in. In case of faults,
outputs are set high that can be noticed by the computing system and measures can be taken. In
case of malfunctioning of the amplifiers the tracking error will become too large, this can be
detected and measures can be taken. The amplifiers can check for under/over voltage of the
power supply, short circuiting of motor currents and overheating of the amplifiers themselves.

2.2.5 Checking the interface cards

The Imotec manipulator uses three types of interface cards in the computer system: an encoder
card, a digital input/output card and an analogue output card. These can all malfunction.
Malfunctioning of the encoder card can be detected by the following.

• The value of the encoder reading does not change at all, thus a growing tracking error.
• The difference in values between two successive samples is much bigger then the

translators possibly could move in the time difference.

Design concerning safety issues

13

It is difficult to check the analogue output card directly. A feasible method is to compare the
error signal of the controller inside the software with a threshold. For instance, if the analogue
card would malfunction it either send zero to the output or a fixed value different from zero. In
both cases the translators will not move because there is no commutation performed. The
tracking error will grow large and this can be detected. Performing the commutation inside the
software and not in the amplifiers makes the manipulator inherent safe.

The digital I/O card can be checked by using redundancy. This means using two input channels
to read in one signal. For faultless operation the two inputs should be the same. But this method
costs a lot of inputs and will not be used. The faulty operation of the digital I/O card will not
cause life-threatening situations because emergency stops are not handled in software only, but
are also applied directly to a safety relay. Therefore no checks will be applied to the digital I/O.

2.2.6 Checking the computer system

With the computer system there are two types of faults possible. First it is possible that there is a
bug in the software. This can be a bug in the controller software but also a bug in the operating
system itself. It is hard to detect this kind of software problems. A bug can result in the sitation
that the tracking error will grow large during a motion or that the manipulator does not react on
commands like start and stop.

Secondly the computer can crash totally. This can be detected by means of a watchdog. This is a
hardware component, which receives a signal from the computer system and checks if the
computer is running. If the computer has crashed, this signal will not be detected and the
watchdog will notice the malfunctioning of the computer system. Then proper action can be
taken by the hardware, like activating the safety relay. In figure 2.8 the circuitry is given for the
watchdog function.

The working principle is as follows. A pulse train from the software drives a switch that
activates timer relays K1 and K2. These are of the delayed fall-off type. As long as a pulse train
is present with a period time that is smaller than the fall-of time, the contacts K1 and K2 will not

PC

+24V

GND

K1 K2

K1

K2

Safety
Relay

Fig. 2.8 The watchdog circuitry for checking the computer system.

Design concerning safety issues

14

fall-off. When the computer system crashes, the pulse train will stop and after the delay time of
the relay, the contact K1 or K2 will fall-off. This will cause the safety relay to take action.

2.3 Faults by the environment

For safe operation of the manipulator, the system should not interact with the environment
physically. The Imotec manipulator is covered with a removable transparent security hedge
made of lexan. Safety switches mounted on the hedge secure operation of the manipulator only
when the hedge is mounted. This hedge ensures that no people or animals can enter the work
area of the manipulator during operation. It also provides protection against the possibility that
objects are thrown out of the work area by the manipulator.

Another cause of possible faults can be wrong input of the user. The user can cause the
manipulator to operate beyond its limits either by mistake or on purpose. The method discussed
in 2.2.1 avoids operating the manipulator beyond the limitations even if the input is wrong.

2.4 Applied checks and their responses

In section 2.2 and 2.3 possible faults that can arise have been discussed. Table 2.1 summarizes
the checks and their responses for the manipulator.

Check: What Check: How Response
Manipulator checks

Motor temperature Thermal resistors to digital input Steering signals zero
Amplifiers Judging tracking error Steering signals zero
Encoder cards Judging tracking error Steering signals zero
Computer system Watchdog circuitry (hardware) Power cut-off

User input
Exceeding work area Judging end-effector position Steering signals zero
Actuator saturation Judging tracking error Steering signals zero

Environment
Entering work area Sensor on hedge (also hardware) Power cut-off
Emergency Emergency stop button to digital input

and to hardware
Emergency stop and

delayed power cut-off

Most of the safety checks will respond with setting the steering signals to zero if a fault arises.
The check of the computer system and entrance of the work area is handled in hardware. The
power is cut off by the safety relay that falls off. The remaining checks will be solved in
software. The next chapter describes the implementation of the safety checks and the total
controller system.

Table 2.1 Applied checks and their responses for the manipulator.

Implementation of the safe controller system

15

3 Implementation of the safe controller
system

3.1 Introduction

Implementation of the controller with all the safeguards in software can be done conveniently by
using a high level programming method. This section discusses the several implementation
options that are considered. From these options a choice will be made for the final
implementation of the safe controller system.

The purpose of the implementation method is to create a complete working controller program
with al the mentioned safety check mentioned in the previous chapter. The program must
operate on the computing system of the manipulator, but it is not a requirement that the program
must be developed on this system self.

There are some additional requirements that the used implementation form has to meet:

� The software used must be able to work on a PC under DOS, because that’s the

operating system used in the manipulator. The preferred programming language is C++.
The reason for this is that C++ is an object orientated and fast programming language.
Also the Control Laboratory is experienced with C++.

� Testing the created software by means of simulation before implementing it has large

advantages. Therefore, it is highly preferable that the software environment has an easy
way of doing simulations.

3.2 Possible implementation methods of the safe controller system.

The first and most obvious option is to write code in C++. This is not a high level method and
will be laborious. Also, doing tests with the created code by simulations is not easy. A better
method is the concept of agent based controller systems as proposed by [Van Breemen, 2000].
This method is more structured than a general programming language. It allows incremental
design, which means that functionalities can be added later on without interfering with earlier
implemented parts. This is very suitable for the safe controller design.
An agent is an abstract entity that is able to solve a particular part of a total complex problem.
Cooperation of multiple agents provides a solution to the total complex problem. For the present
context, this is referred as a Multi Agent Controller system (MAC). In [Bajracharya, 2003] an
integrated design tool for Multi Agent Controller systems (IDITMAC) is developed. This tool
also makes it easy to test the created software by simulation. A Dynamically Linked Library
(dll) file is created, which can be incorporated with 20-Sim modeling and simulation
environment. This tool will be used for implementing the safe controller system of the Imotec
manipulator.

Implementation of the safe controller system

16

3.3 The concept of MAC systems

The term agent is widely used in the field of software engineering and artificial intelligence.
In [Franklin, Graesser, 1997] an autonomous agent is defined as:

“An autonomous agent is a system situated within and a part of an environment that senses that
environment and acts on it, over time, in pursuit of its own agenda and so as to effect what it
senses in the future.”

Stated in other words, an agent can decide for it self whether it should undertake some actions.
To undertake the action, the agent first has to become active.

A MAC system consists of three basic agents:

� Controller agent
� Sensor agent
� Actuator agent

In figure 3.1 the symbols that are used for the basic agents are given. The next sections will give
the explanation and describe the function of the various parts.

3.3.1 Controller agents

Two types of controller agents can be distinguished in the MAC system.

� Elementary agent
� Composite agent

The elementary agent is the fundamental agent of a MAC system. It implements the local
control solution for a part of the global control problem. The composite agent is a pool that
consists of elementary and/or other composite agents. This allows hierarchical organization of
the MAC system. The overall agent that contains all the other agents and is responsible for the
total control system is called a Main agent. This is also a composite agent.

Actuator
Agent

Controller Agent

Fig. 3.1 Symbols of the basic agents in a MAC system.

Sensor
Agent

Implementation of the safe controller system

17

3.3.2 Sensor agents

The sensor agent senses the environment and presents the data to the other agents. The data from
the environment can be user input for controlling the system, measured values from the plant
and disturbances. Because of the discrete implementation, the data will come from Encoder
interface cards, A/D converters and digital inputs cards.

3.3.3 Actuator agents

Actuator agents present the processed control data to the environment. This control data can be
signals for indicator lights, steering signals for the plant etc. The data will be presented to the
environment by D/A converters and digital output cards.

3.4 Coordination of agents

Coorperation of agents is determined by a coordination mechanism. Agents that are cooperating
are combined in a pool of agents (which is a composite agent). A coordination object that is also
included in the pool does the coordination. In figure 3.2 the symbol of coordination objects is
given. The coordination objects can be divided in three types:

� Independent
� Cooperative
� Competitive

Independent: coordination allows two or more agent to be active at the same time. The agent
that are active at the same time have control over different outputs and do not interfere with each
other. An independent type coordination is the Parallel coordination object, which is also the
default one.

Cooperative: coordination also allows two or more agent to be active at the same time. But now
the agent can have control over the same output. Also the output of one agent can be the input of
the other ones. Master-slave coordination object and Fuzzy addition coordination objects are
cooperative type objects.

o Master-slave coordination: If one agent is active the other one is also active.
o Fuzzy addition coordination: The shared output is a function of the agent outputs that are

active.

Competitive: coordination allows only one agent to have control over a certain output.
Coordination object of this type are Fixed priority coordination, Sequential coordination and
Cyclic coordination.

o Fixed priority coordination: From all the agents that wants to be active, the one with the
highest priority is allowed to be active.

o Sequential coordination: the agents of the pool are activated after each other. That means
that when one agent stops being active, the next one in the pool becomes active.

Implementation of the safe controller system

18

o Cyclic coordination: this coordination is almost the same as Sequential except that if the
last one in the order stops being active, the first one becomes active again.

With these four coordination objects and the possibility for a hierarchical organization, complex
controller problems can be solved in a partial manner. The MAC system for the Imotec
manipulator will be described in the next section.

3.5 MAC system for the manipulator

An overview of the total controller agents for the Imotec manipulator will be given and their
functions will be discussed. The entire controller is called the OverallController and has input
connections to the buttons like START, STOP and EMERGENCY. Also the three encoder
values z1, z2, z3 and the end switches of the motors are acquired by the inputs sensors. The
outputs of the OverallController are the control voltages that drive the amplifiers and the digital
outputs signals. A schematic overview of the total control system is given in figure 3.3.

The OverallController consists of a pool with a Startup, Alarm, GuardedEmergency, and a
GuardedStandard agent. The coordination is fixed priority, see figure 3.4. In the following
sections the function of these agents will be discussed.

Fig. 3.2 Symbol of the coordination objects.

Fig. 3.3 The Main controller agent for the manipulator.

Outputs Inputs OverallController

Main Agent

Implementation of the safe controller system

19

3.5.1 Startup agent

The first agent in priority order is the Startup agent. It becomes active when the ENABLE
button is pressed. This button also activates the safety relay. When active, this agent performs
the alignment and the homing of the manipulator. At the end of the homing procedure, the
platform is positioned in the lowest centre point of the safe work area cylinder, see figure 3.5.
This point is referred as the home location. The manipulator is now ready for operation and
waiting to perform a specified motion.

Fig. 3.4 Pool with agents of the OverallController system.

Fixed

OverallController

Startup

Alarm Inputs Outputs

voltage

voltage

Guarded
Emergency

Guarded
Standard

voltage

voltage

Fig. 3.5 Location of the home position.

Implementation of the safe controller system

20

3.5.2 Alarm agent

The Alarm agent is an elementary agent and becomes active when the manipulator approaches
situations that are not allowed or when malfunctioning of the manipulator occurs. It is activated
on the following conditions:

• The thermal resistors indicate that the linear motors heat up too much and digital input is
set high.

• The platform exceeds its safe work area; approximation done according to section 2.2.1.
• Internally generated errors; e.g, unexpected startup position, aligning unsuccessful,

encoder index pulse not found during homing procedure.

Also the end switches of the linear motors activate the alarm agent, but theoretically this will not
occur, because the platform has to exceed its safe work area to reach the end switches. Then the
agent is already activated by the condition of exceeding the safe work area. When the alarm
agent becomes active, all the steering signals are set to zero and the translators will fall down
towards the end dampers. There is a possibility that the translators fall down from a high
position on the end dampers. The end dampers have been constructed so to withstand the
collision that occurs when the translators fall down from the highest position, but this should
preferably be prevented.

3.5.3 GuardedEmergency agent

In case of an emergency, the EMERGENCY button should be pressed. This makes the
GuardedEmergency agent become active. The EMERGENCY button also directly activates the
safety relay. The safety relay switches of the power supply with a time delay of three seconds.
Then the platform and the translators of the motors will fall down because of gravity. The
function of the GuardedEmergency agent is to bring the manipulator in a safe situation within
three seconds. This safe situation is at a position where the translators are about 5 [cm] above
their end dampers and the speed is about zero. Then the translators fall down over a very short
distance and this will not cause any damage. During the positioning of the translators, the
tracking error is monitored by an ErrorGuard. When any of the three tracking errors grow out of
the bounds, this agent sets all the steering signals to zero.

3.5.4 GuardedStandard agent

The GuardedStandard agent consists of a Standard agent and an ErrorGuard in master slave
coordination. As before, the ErrorGuard agent monitors the tracking error and sets the steering
signals to zero in case of exceeding the bounds.

The Standard agent implements the control scheme shown in figure 3.6. This is done by
combining a ModeSwitchController and a GravityCompensator (GC) via a fuzzy addition
coordination. The gravity compensator currently simply generates a constant force to
compensate for the non-variable parts of the gravity load. In the future this might be extended to
a compensation scheme that depends on the actual manipulator position. The motivation for this

Implementation of the safe controller system

21

gravity compensator is that by using this scheme, mode switching will not induce transition
responses due to the gravitational load.

3.5.5 ModeSwitchController agent

The ModeSwitchController agent is given in the figure 3.7. It consists of four agents in fixed
priority coordination. The HoldZero agent is a controller agent with the lowest priority that
keeps the platform at its home position. The Shutdown agent becomes active when the STOP
button is pressed for four seconds. When active, it brings the translators of the linear motors to a
position where they are just above their lower end stops and then it shuts down the program and
switches off the power. When the START button is pressed, the Operate agent becomes active
and the manipulator is then in operation mode. Two parallel working agents perform the
operation mode, see figure 3.8. The PathFromFile agent reads the reference file samples into an
array and presents every sample time a value to the PID agent. For settings of the PID controller
see appendix D. The manipulator then performs the motion as specified in the sample file. In the
case that the starting point of the reference path is not the same as the home point of the
manipulator, the platform moves slowly to this starting point and then the motion is performed
according to the reference path. This functionality is integrated in the PathFromFile agent.

Fig. 3.6 Implementation of the Standard agent

Implementation of the safe controller system

22

Fig. 3.7 Pool with agents of the ModeSwitchController

Fixed

ModeSwitchController

Stop

Operate Inputs Outputs

voltage

voltage

Shutdown

HoldZero

voltage

voltage

When the STOP button is pressed, the Stop agent, which has the highest priority, becomes
active and stops the manipulator by bringing it back to its home position. The Stop agent pool is
given in figure 3.9. It consists of a Brake agent and a GoSteadyAll agent. The brake agent is a
speed control agent that brings the speed of the manipulator to zero. When the STOP button is
pressed, the momentary speed is determined. This measured speed is used to generate an inverse
desired speed step to zero. A low-pass filter filters this desired speed step and the output is the
reference for the speed controller. By using a filter, a smooth reference is generated without
much computational effort.

When the speed of the manipulator is almost zero, the Brake agent becomes inactive and the
GoSteadyAll agent becomes active. This agent brings the manipulator to its home position after
which the Stop agent becomes inactive. Like the Brake agent, also the GoSteadyAll agent works
with a low-pass filter. Now the a desired position step is filtered to create a smooth reference
path. After the home position is reached, the HoldZero agent automatically becomes active and
keeps the manipulator at its home position. The manipulator is then ready and waiting to go in
operation mode again.

Parallel

Operate

PathFromFile

PID
Inputs

Outputs
voltage

Fig. 3.8 The Operate agent pool.

reference sample

Implementation of the safe controller system

23

3.6 Total overview of the MAC system

In figure 3.10 an overview is given of the total MAC system in hierarchical form. With the aid
of IDITMAC created software can be compiled as an executable file to implement in the
computing system of the manipulator. Also a dll file can be created for simulation in 20-Sim. It
can be concluded that the agent based approach enables a convenient design process. The results
of the simulation and the implementation will be discussed in chapter 5. The code for the total
MAC system is given in appendix E.

Fixed

Stop

Brake

GoSteadyAll
Inputs

Outputs

voltage

voltage

Fig. 3.9 The Stop agent pool.

Implementation of the safe controller system

24

 Fig. 3.10 Hierarchical overview of the total MAC system.

Path generation

25

4 Path generation

4.1 Introduction

To perform motions with the manipulator, a motion profile input is needed by the PathFromFile
agent. Motion profiles vary in shape and order. In one-dimensional manipulators, the shape of
the motion profile is restricted to a straight line only, whereas in a multiple axes manipulator,
much more complex shapes can be defined. Usually, profiles are defined as piecewise
polynomials. The order of the profile gives the smoothness of the path. Higher order motion
profiles are easier to follow by the end-effector, but require more complex computation and
usually imply larger accelerations. This chapter will discuss path generation in general for
multidimensional manipulators and a generally applicable tool for path generation will be
developed.

4.2 Tools for path specification

For performing a motion, the controller of the actuator needs a sample of the path at each
sample instant. This means that the path has to be presented to the controller as a list of
reference points. It is a laborious and error-prone job to create this list manually, especially for
complex trajectories. A tool on the market which allow us to give up begin points, end points,
speed, acceleration etc. and creates the reference position samples from these parameters, is the
Motion Assistant from National Instruments [www.ni.com/motion]. See figure 4.1 for a
screendump of the tool.

Fig. 4.1 Screendump of National Instruments path specification tool.

Path generation

26

The Motion Assistant allows specifying motions in a graphical manner. By clicking and
dragging with the mouse, we can manipulate the shape of the motion. Types of shapes that are
available in the tool are straight-line movements and arc movements for up to 3 degrees of
freedom. For the order of the profile we have the option between second order and third order
profiles, which are also called respectively trapezoidal and s-curve profiles (these terms refer to
the shape of the speed curve). A major drawback of the Motion Assistant is that it works only
with hardware interfaces from National Instruments. This conflicts with the desire for a
generally applicable path specification tool. Therefore the Motion Assistant will not be used
further. Based on concepts as present in the Motion Assistant, the choice has been made to
develop a path generation tool, which is hardware independent. This will be discussed in the
next section.

4.3 The Path Generator

The generally applicable tool, see figure 4.2, uses an XML format to store motion information in
an structural way. See Appendix C for an introduction to XML. The tool is written in Borland
C++ Builder. An advantage of this is that the programming environment allows us to work
directly with XML documents. This is done with the component TXMLDocument. It has
methods like AddChildNode, GetChildNode, GetNodeName for manipulating nodes in an XML
document directly.

 Fig. 4.2 The generally applicable path generation tool.

Path generation

27

The tool creates reference points in three coordinates. For the Imotec manipulator these
coordinates are interpreted as positions x,y,z of the end-effector. The reference points are
transformed according the inverse kinematics of the manipulator. For the Imotec manipulator
this is done with [2-1]. At the moment no clicking and dragging options are available to set the
shape of the motion. Also checking the created path with a plot must be done externally. For
this, free plotting programs like GNUPLOT can be used. Motions are built up of segments. Each
segment is a motion from standstill to standstill. Segments with initial and final speed not equal
to zero are considered, but a problem with this is that discontinuities in speed and acceleration
will arise at the joint between two segments. This can be overcome by connecting the segments
with a spline movement or a Bezier curve. A major drawback of this is that considerable
computational effort is needed for control over the shape of the Bezier curve. The manipulator
could exceed its workspace if the Bezier curve is not well defined. So for the moment we only
consider motion segments from standstill to standstill.

Available motion shapes are straight line and arc shapes. The latter of course only in case of two
or more dimensional manipulators. Profile types that can be chosen are trapezoidal and s-curve.
It is desirable to have the opportunity to enter different values for the acceleration and the
deceleration of a single segment. This option is included in the Path Generator. See table 4.1 for
the functions of the Path Generator.

When the desired segments have been added, the parameters can be changed by double clicking
and editing the relevant items in the tree. The parameters and their meanings can be found in
table 4.2.

Button Function

 Adds a straight motion segment with trapezoidal profile.

 Adds an arc motion segment with trapezoidal profile.

 Adds a straight motion segment with s-curve profile.

 Adds an arc motion segment with s-curve profile.

 Adds a wait in the motion

 Deletes a wait or a motion segment.

 Creates the file with reference samples

Table 4.1 Functions of the Path Generator tool.

Path generation

28

Icon Parameter

 Starting point coordinate for the motion.

 Distance coordinate of a motion segment.

 The maximum speed of the motion segment.

 The maximum acceleration of the motion segment.

 The maximum deceleration of the motion segment.

 The jerk of the motion segment with s-curve profile.

 The radius of an arc movement.

 Angle of an arc movement, more or less than π.

 Auxiliary coordinate point for plane of arc movement.

After the desired motion has been set up, the reference sample file can be built by clicking the

 button. The user will be prompted to enter the sample frequency of the controller system. A
sample file with extension .egl will be created. In the next sections, the algorithms for creating a
sample file from the XML file will be discussed. An example of a saved XML path file is given
in appendix C.

4.4 Trapezoidal profile algorithm

For creating a trapezoidal motion profile, the following parameters are needed. The maximum
speed Vmax that is allowed to be reached, the acceleration A, deceleration D and the length of the
stroke h. In figures 4.3 and 4.4 the position, speed and acceleration plots are given of the
trapezoidal motion for two cases: when the maximum speed is reached within the given stroke h
and when not.

Table 4.2 Parameters of the Path Generator tool.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

pos
speed
acc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

pos
speed
acc

Fig. 4.3 Trapezoidal motion profile when
the maximum speed is reached.

Fig. 4.4 Trapezoidal motion profile when
the maximum speed cannot be reached.

Path generation

29

In the algorithm, these two situations have to be distinguished. The algorithm is based on
integrating the profile of the speed to a position; the speed profile is obtained by applying the
given A and D. To take the right speed profile, a check must be performed to see if the
maximum speed can be reached within the given stroke h. This is done by calculating the
distance that would be travelled if the maximum speed would be just reached. If this distance,
which is called h’, is larger than the given stroke h, the maximum speed will not be reached.
With these tests, the following speed profiles are obtained and can be integrated, see figure 4.5.

To perform the actual integration, the times Ta till Te need to be known. These can be calculated.
First we take a look at the profile where the maximum speed is reached.

We introduce the times T1 and T2 which are respectively the times to reach Vmax with the given
acceleration A and to return from Vmax to zero speed with the given deceleration D.

max
1

max
2

VT
A

VT
D

=

=
 [4-1]

with this the mentioned h’ becomes.

1 2 max()'
2

T T Vh +
= [4-2]

The times Ta, Tb and Tc can be calculated as:

a 1

max

2

(')
b

c

T T
h hT
V

T T

=
−

=

=

 [4-3]

For the situation where Vmax is not reached the following holds:

Fig. 4.5 Speed profiles that are integrated to a position profile.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

Speed

Ta Tb Tc

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Speed

Td Te

Path generation

30

2 2

2
d eAT DTh +

= , [4-4]

d e
DT T
A

= [4-5]

This yields

2

2

2 e

D D
Ah T

+
= [4-6]

Now the value of Te can be calculated as

2
2

e
hT

D D
A

=
+

 [4-7]

With relation [4-5] also Td is known and the integration can be performed.

4.5 S-curve profile algorithm

For the s-curve profile, an extra parameter is needed in addition to the trapezoidal profile
parameters, namely the derivative of the acceleration/deceleration called jerk. For the
acceleration A and deceleration D the same value for the jerk is taken. Only the maximum
values of A and D can be different. Like the trapezoidal profile, also here there are several
situations that have to be distinguished. Now not only a check for reaching the maximum speed
has to be done, but also whether the maximum acceleration/deceleration can be reached within
the given stroke h. In figure 4.6 a plot of the S-curve profile is given when the maximum speed,
the maximum acceleration and the maximum deceleration are reached.

0 1 2 3 4 5 6

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

pos
speed
acc

Fig. 4.6 S-curve motion profile with both maximum
speed and acceleration reached.

Path generation

31

The basis acceleration profile is given in figure 4.7. This can be integrated two times to obtain
the desired position profile. Before the integration can be performed, the times Ta till Tg have to
be known. If the maximum speed is not reached, Td equals zero. If the maximum acceleration or
deceleration is not reached, respectively Tb and Tf equal zero.

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ta Tb Tc TgTeTd Tf

First we distinguish whether or not the maximum speed is reached. The times Ta, Tb and Tc are
calculated to reach the maximum speed with the given maximum acceleration and jerk. Then the
times Te, Tf and Tg can be calculated to return from this maximum speed with the given
maximum deceleration and jerk. With the calculated times, the total covered distance h’ can be
calculated. If this distance is smaller than the stroke h, it is certain that the maximum speed is
reached and Td is larger than zero. The time Td that the maximum speed holds on can be
calculated as:

max

'
d

h hT
V
−

= [4-8]

Then all the times are known and the integration can be performed. In the situation where the
distance h’ is larger than h, it is certain that the maximum speed will not be reached. Then the
acceleration profile will have one of the four following shapes (figures 4.8).

Fig. 4.7 Basis acceleration profile that is
integrated to position.

Path generation

32

Profile 4 is solved easily because of symmetry. Profile 1 can be solved in the following way.
First the distance h’’ that is covered when the maximum acceleration is just reached is
calculated. This distance h’’ is smaller then the stroke h. A formula can be derived for the
distance (h - h’’) that is needed to equal stroke h as a function of ∆Tb. The order of ∆Tb is two in
this function. That means that it can be solved with the ABC formula. Profile 2 and 3 are solved
on the same manner as with profile 1, also here a formula can be derived for the distance that is
needed to equal h as a function of ∆Te. But here the order of ∆Te is three in this function. This
means that there is no analytical general solution. The function can be solved numerically by
iteration. The formula’s for (h - h’’) are not given because of their large size and non-
transparancy.

4.6 Straight line movement

The straight line movement is a relatively simple movement. The trapezoidal or S-curve profile
that is generated has to be assigned to the straight line movement. If the manipulator is a single
axis manipulator then the transformation is not needed. For multiple axis manipulators like the
Imotec manipulator the transformation goes as follows. First the straight line movement has to
be decomposed in the distances along the dimensions, like ∆x for the distance covered along the
x-axis etc. Then the transformation becomes:

2 2 2h x y z= ∆ + ∆ + ∆ [4-9]

0 1 2 3 4 5 6 7 8
-1

-0.5

0

0.5

2

0 1 2 3 4 5 6 7 8 9
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4 1

0 1 2 3 4 5 6 7 8
-0.5

0

0.5

1

3

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

4

Fig. 4.8 Possible acceleration profiles when the maximum speed is not reached.

Path generation

33

xx pos

h
yy pos

h
zz pos

h

∆
=

∆
=

∆
=

 [4-10]

With pos the instantaneous position value of the trapezoidal or S-curve profile.

4.7 Arc movement

The arc movement is more complex to generate but also more difficult to enter/define by the
user. In xy-manipulators the parameters needed are a beginpoint, endpoint and the radius of the
arc. However this is not sufficient to define the arc motion unambiguously. Figure 4.9 shows the
possible arc motions with only the parameters above given.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
Arc 1
Arc 2
Arc 3
Arc 4

R

R .

.
Beginpoint

Endpoint

From the figure can be seen that there are four possible arc movements: two arcs that make a
smaller angle than π and two arcs that make a larger angle than π. Defining that the arc motion
is clockwise from beginpoint to endpoint for the smaller angle arcs and counter clockwise for
the large angle arcs, makes the method more unambiguous. This means that in figure 4.9 only
arc 3 and 4 are possible. To complete the method also a choice between arc 3 and arc 4 has to be
made. This is done by entering an extra parameter, which defines whether the angle of the arc is
smaller or larger than π.

Fig. 4.9 Possible arc movements when only a beginpoint, endpoint and radius
are entered in a two dimensional manipulator.

Path generation

34

In three dimensional manipulators the arc is not restricted to the xy-plane. An extra parameter is
needed to define the plane of the arc. There are various ways of defining this plane. For
instance, an option is to first define the arc in the xy-plane as with two-dimensional
manipulators. Then by giving up two angles the arc can be placed in the desired plane. This is
what is done in the Motion Assistant from National Instruments, See figure 4.10.

X

Y

Z
ϕ

θ

A major drawback of this method is that the endpoint of the arc motion cannot be entered
directly by the user. This is highly desirable when defining a motion. A better method which
allows entrance of the endpoint is the following method. A third auxiliary point is entered which
defines the plane together with the begin and endpoint. The auxiliary point is given up with
respect to the beginpoint. This method is used in the developed Path Generator tool.

4.8 Assigning the sample reference points to the arc movement

To create the actual arc movement, the trapezoidal or S-curve profile has to be assigned to the
motions along the axes of the manipulator. In this section the procedure for a three dimensional
one like the Imotec manipulator will be discussed. A two dimensional transformation can be
derived easily from the three dimensional one. In figure 4.11, some vectors are defined that are
needed for the conversion. An arc movement can be described as the rotation of vector e in the
plane of the arc. This vector rotates from the beginpoint Bp to endpoint Ep, with a speed conform
the motion profile that is used (trapezoidal or S-curve). Ap is the auxiliary point of the arc
motion that defines the plane of the arc movement.

Fig. 4.10 A method for defining arc motions in three dimensional manipulators,
first the arc is defined in the xy-plane and then rotated and tilted to the desired
plane.

Path generation

35

. .

.

Bp

Ep

a

b
c

d

Ap

. m

e

z

y
x

Ap is entered as a point with respect to Bp and therefore equals vector b. The centre point m of
the arc has to be determined to create the rotation vector e. The point m can be found on the
following way. First the vector a is found as:

a
2

p pE B−
= [4-11]

The normal on the plane of the arc motion, vector c, is found by:

ac b= × [4-12]

We define a new vector g, which is aligned with d, but has not the same length as d.

ag c= × [4-13]

Then the vector d can be found as

221 ad R g
g

= ⋅ − ⋅ [4-14]

With R, the known radius of the arc motion. And finally for the point m:

apm B d= + + [4-15]

Fig. 4.11 Vectors that are defined to transform the arc parameters in to the
sample file.

Path generation

36

With the centre point m of the rotation and the motion profile known, the actual rotation of
vector e can be performed to obtain the sample points along the arc. The rotation vector e is
found by:

 pe B m= − [4-16]

The rotation is done by placing the plane of the arc in the xy-plane, rotating about the z-axis over
a variable angle β and then transforming back. The transformation matrix to place the plane of
the arc in the xy-plane is called Rc and the rotation matrix in the xy-plane is called R(β).

The actual sample values s of the arc motion is found by:

-1
() c cs m R R R eβ= + [4-17]

Rc follows from Bp, Ep and Ap. We need to find the variable angle β for rotating e about the z
axis with the rotation matrix R(β).

The overall rotation angle α that vector e makes, is found by the inner product of the vectors e
and d.

12cos d e
d e

α −  − ⋅
=   

 
 [4-18]

With the known radius R, the angle α is related to the motion stroke h by:

(2)

R angle
h

R angle
α π
π α π

<
=  − ≥

 [4-19]

Take pos to be the instantaneous values of the trapezoidal or S-curve profile, running from zero
to h. The values of pos can be transformed back in the variable angle β by:

pos angle
R

pos angle
R

π
β

π

− <= 
 ≥


 [4-20]

As a result, β will go from zero to α [rad] with a trapezoidal or S-curve motion profile and the
rotation can be done.

Simulation and experiments

37

5 Simulations and experiments

5.1 Introduction

In this chapter the developed path generator and safe controller system will be tested. Both
simulations and actual experiments are carried out. First a demonstrator path is made with the
Path Generator tool. This path will be used to perform motions with the manipulator. The
response on emergency and alarm situations will be tested. Also the response on a too large
tracking error which is monitored by the ErrorGuard agent is verified. Becasuse of time
constraints, the experiments with LFFC have not been carried out.

5.2 Design of demonstrator path

First a path is made that will operate the manipulator in its safe work area. Therefore an alarm
situation is not expected to occur and the manipulator should operate normally. The specified
motion is a spiral with a radius of 0.15 [m] that curls from zero height to 0.25 [m] and then
returns to the home position in a straight line. The motion starts in the home position, see figure
5.1 for a plot of the motion. The maximum speed is 0.2 [m/s] and the maximum acceleration 0.5
[m/s2]. Later on, this path will be modified such that it exceeds the safe work area and alarm
situations should arise.

x
y

z

0
-0.1

-0.2

0.1
0.2

0

0

-0.2

0.2
0.1

-0.1

0.15
0.05

0.25

-0.15
-0.05

0.2

0.15

0.1

0.05

startpoint

Fig. 5.1 Plot of the path created with the Path Generator tool that
operates the manipulator in its safe work area.

Simulation and experiments

38

5.3 The 20-Sim model of the manipulator.

A 20-Sim model of the manipulator is available that can be used for verifying the developed
software in simulation (De Vries, De Kruif). An overview of the top level of this model is given
in figure 5.2. The plant model consists of the following parts:

� 3 linear motors that operate in z-direction. These submodels primarily consist of a

modulated source of force and a translator mass;
� 3 arms with ball joints on both ends. The arms implement the kinematics of the robot. In

order to allow for the use of explicit integration methods, they also contain spring- and
damping effects. I.e., although these effects could also be motivated physically, they
have been included for simulation purposes and the corresponding parameter values are
chosen from this perspective;

� a platform (plateau). This plateau has mass and can move with three degrees of freedom
(x, y, z).

For evaluation purposes, the model has been extended with a multi-agent controller and with
signal sources that emulate the digital hardware inputs. The input buttons are implemented as
pulse generators. The controller is a sub model that contains the dll created with the IDITMAC
program. The plant model has not been validated and hence is not competent for tuning the PID
settings of the controller. But this is not a problem; the goal of the used model is to verify the
functionality of the created software and not to optimize the controller for small tracking error.

Fig. 5.2 20-Sim model of the Imotec manipulator.

Simulation and experiments

39

5.4 Verifying the standard mode in simulation

The first simulation that is done is to test the normal operation mode of the manipulator. That
means that the manipulator is waiting for the START button to be pressed. When the START
button is pressed, the manipulator has to perform the movement as specified in figure 5.1. When
the STOP button is pressed before the end of the specified motion, the manipulator must brake
and return to its home position. First the results are given of the case where the STOP button is
not pressed and the motion is performed till the end, see figure 5.3.

0 5 10 15 20
time{s}

0

0.1

0.2

0.3

0.4
z1
z2
z3

-0.1

x
y

z

0
-0.1

-0.2

0.1
0.2

0

0

-0.2

0.2
0.1

-0.1

0.15
0.05

0.25

-0.15
-0.05

0.2

0.15

0.1

0.05

Fig. 5.3a Simulation of the motion given in figure 5.1 for z1, z2
and z3; the START button is pressed at t=1 sec. The STOP
button is not pressed and the motion is performed till the end.

Fig. 5.3b 3D simulation of the motion given in figure 5.1 for x, y
and z, the START button is pressed at t=1 sec. The STOP button
is not pressed and the motion is performed till the end.

Simulation and experiments

40

From the plots can be seen that the manipulator behaves as expected. In figure 5.3a it can be
seen that the platform is held in its home position until the START button is pressed at t = 1 sec.
Then the motion is performed. Notice that z2 becomes negative first. The fact that the translators
are not at their lowest point when the platform is in its home position explains this. z1, z2 and z3
can vary maximally between –0.08 [m] and 0.45 [m]. Now the test will be continued with the
case that the STOP button is pressed before the end of the specified motion. These results are
given in figure 5.4.

0 5 10 15 20
time{s}

0

0.1

0.2

0.3

0.4
z1
z2
z3

-0.1

0.25

0

-0.1

-0.2

0.1

0.2
0

0

-0.2

0.2
0.1

-0.1

0.2

0.15

0.1

0.05

y
x

z

stop button pressed

startpoint

phase a

phase b

phase c

Fig. 5.4a Simulation of the motion given in figure 5.1 for z1, z2 and z3, the
START button is pressed at t=1 sec. The STOP button is pressed at t=13 sec.
The motion is stopped and the manipulator moves to its home position.

Fig. 5.4b 3D simulation of the motion given in figure 5.1 for x, y and z, the
START button is pressed at t=1 sec. The STOP button is pressed at t=13 sec.

Simulation and experiments

41

Again from the plots of figure 5.4 can be seen that the manipulator behaves as expected. When
the STOP button is pressed at t = 13 sec. the manipulator brakes and moves towards its home
position, then it is ready to perform the motion again when the START button is pressed. Fig
5.4b shows the motion of the platform. Due to the kinematics, the shape of the motion after the
stop is not straight, but rather arbitrary. One can recognize three phases:

� a: all the translators move towards their zero point.
� b: translator 2 has reached its zero point and translator 1 and 3 are still moving.
� c: only translator 1 is still moving towards its zero point.

The followed path of the platform is arbitrary because the speeding down and positioning of the
translators towards their home positions is done independent from each other.

5.5 Verifying the ErrorGuard

In case of too large tracking errors, all the steering signals should be set to zero by the
ErrorGuard agent. This simulation is given in figure 5.5. At t = 4.4 sec., the value of encoder 3
is set to zero to emulate an error. This results in a large tracking error and therefore the
ErrorGuard agent should become active.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
time {s}

-2

-1.5

-1

-0.5

0

0.5

z1
z2
z3

{m
}

In the plots can be seen that. We note that when the encoder value 3 is set to zero, the alarm
agent (which has a higher priority) also can become active. The alarm agent uses the encoder
reading to approximate the position of the platform. A bad encoder reading can result in
determining that the platform is outside its safe work area. However, the response of the Alarm
agent is the same as the response of the ErrorGuard agent (setting all the steering signals to zero)
and therefore this has no consequences.

Fig. 5.5 Simulation of the ErrorGuard agent. An encoder error is emulated at t
= 4.4 sec. The steering signals are set to zero then and the translator fall down
towards the end dampers

Simulation and experiments

42

5.6 Verifying the emergency situation in simulation

In emergency situations the EMERGENCY button is pressed. The manipulator should react on
this by bringing the platform to a safe position first and then switching off the power. In
simulation, switching off the power is not taken in account. The simulation of the emergency
situation is given in the plots of figure 5.6.

0 1 2 3 4 5
time{s}

-0.2

-0.1

0

0.1

0.2

z1
z2
z3

-0.05
0

0.05
0.1

0.15
0.2

-0.04
-0.03

-0.02
-0.01

00.01
0.02

-0.1

0

0.02

-0.06

x

-0.02

-0.04

y

z

-0.08

-0.12

emergency button pressed

startpoint

Fig. 5.6a Simulation of an emergency situation during the motion, the
EMERGENCY button is pressed at t=3 sec. The translators move down to a
safe position just above the lower end stops and wait until the power is cut off.

Fig. 5.6b 3D simulation of an emergency situation during the motion, the
EMERGENCY button is pressed at t=3 sec.

Simulation and experiments

43

From the plot in figure 5.6a, we see that the emergency mode works properly. At t = 3 sec. the
EMERGENCY button is pressed. The speed of the translators is reduced and then they move to
the lower safe position where z1 = z2 = z3 = -0.1. Figure 5.6b shows that the platform moves
towards the safe position. The followed path to get there looks a bit strange. The reason for this
is the same as with the stop mode: the translators are slowed down and positioned independent
from each other.

5.7 Verifying the alarm mode in simulation

To verify the alarm mode of the controller, first the reference path is modified such that the
manipulator will exceed its safe work area. At the moment that this happens, the alarm mode
should become active and the steering signals must be set to zero. The reference path that is
used causes the platform to move to the point {0.3, 0.1, 0.0}. This point lies outside the safe
work area and therefore the alarm mode becomes active. The results can be seen in the plots of
figure 5.7.

0 0.5 1 1.5 2 2.5
time {s}

-0.6

-0.4

-0.2

0

0.2

0.4

z1
z2
z3

Fig. 5.7a Simulation of an alarm situation during the motion; the platform is forced to
operate beyond its limits. At the moment that the platform reaches its limit, the steering
signals are set to zero and the translators move down towards the end stops.

Simulation and experiments

44

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-0.02
0

0.02
0.04

0.06
0.08
0.16

0.14

-0.12

-0.1

0.08

0.06

-0.04

-0.02

0

0.02

x
y

z

startpoint

point where limit is reached

From the simulation plots of figure 5.7, we see that the alarm mode works correctly for
exceeding the safe work area. The steering signals are set to zero when the platform reaches its
limits. The translators then move down due to gravity. In the plot is seen that the translators
continue falling down. In the real system the end dampers stop them, but in the model this has
not been incorporated.

5.8 Experimental results

The designed controller system has largely been implemented on the computing system of the
manipulator. This means that the hierarchy of fig 3.10 is for a large part also realized in the
actual real time control system. Compared to the simulated control system, the following
differences are present:

� the StartupController, which was not included in simulations, has been implemented as a

sequentially coordinated composite agent consisting of: a CheckStartAgent, an
AlignAgent, a HomingAgent and a GoHomeAgent.

� the Alarm and GuardEmergency agents have not yet been included
� the Stop agent and the Shutdown agent have not yet been added.

The following controller settings are used which gave satisfactory results.

K = 89290 [N/m]
Td = 0.01264 [s]
Ti = 0.2 [s]

Fig. 5.7b 3D simulation of an alarm situation during the motion. When the
platform reaches its limits, the alarm mode becomes active and switches off the
power. The translators then move to the end stops.

Simulation and experiments

45

The motion according to fig 5.1 is performed with the manipulator. For safety reasons the path
is sligthly modfied to lower accelarations and speeds. Therefore the motion time is larger. The
results of performing the motion with the actual manipulator are given in the figure 5.8 till 5.10.

Fig. 5.8 Result of motor 1 with actual manipulator motion.

Fig. 5.9 Result of motor 2 with actual manipulator motion.

Simulation and experiments

46

From the plots can be seen that the tracking error has peaks of somewhat larger than 250 [µm].
These peaks coincides with the moments where a velocity reversal occurs with the translators.
This large peak can be explained by the phenomena of stiction. If we disregard the peaks, the
tracking error is about 100 [µm]. This is conform expectations.

Fig. 5.10 Result of motor 3 with actual manipulator motion.

Conclusion and recommendations

47

6 Conclusions and recommendations

6.1 Conclusions

The aim of the assignment was to design and realize a safe controller system for a parallel
manipulator including the setpoint generation. The safe controller is designed and implemented
according to the agent-based approach as introduced by [Van Breemen, 2000]. For doing this
the tool IDITMAC is used. The tool provides a convenient design process and the designed
software can easily be incorporated with the modelling and simulation environment 20-Sim for
verification. The designed safe controller has been tested in simulation and the correct operation
of the various modes (Standard, Alarm and Emergency) is verified. The obtained structure of the
safe controller system is also applicable for other manipulators; only the conditions for agent
activity will vary.

A safety analysis of the manipulator is done and has resulted in the following crucial points:

• Judging tracking error
• Judging platform position for not exceeding safe work area.
• Hardware safety circuitry

Furthermore, performing the commutation algorithm inside the computer system and not in the
amplifiers makes the manipulator inherent safe.

The designed controller is largely implemented in the computer system of the Imotec
manipulator. A slow, large stroke movement is performed which resulted in a maximum
tracking error of 250 [µm]. This peak occurs at moments of velocity reversal. Therefore, the
error peak can be explained as a result of stiction.

Because of time constraints, the experiments with Learning Feed Forward Control have not been
carried out, but it is expected that adding the LFFC to the feedback loop will give a large
improvement considering the stiction.

A general path specification tool is developed for defining reference paths for xyz-manipulators.
It allows giving up a motion in segments. Supported motion profiles are trapezoidal and S-
curve. For the moment, the shape of the reference paths can be straight line and arc movements.
The defined path is stored in XML format for which a schema is available. The tool also creates
a file with reference sample points as setpoint for the feedback controller.

Conclusion and recommendations

48

6.2 Recommendations

In alarm situations of the safe controller, the steering signals are set to zero. This causes the
translators to fall down on the end dampers (This also happens in power cut-off situations). It
would be better to brake dynamically in those situations. The coils of the translators can be short
circuited by means of a brake relay. This would result in a slow movement of the translator
towards the end dampers.

The approximation of the platform position has a too large variation; the error that is made
depends too much on the angle φ in cylindrical coordinates. A better approximation should be
made that also takes φ in account.

The Function Approximator has to be added to the feedback controller and experiments must be
done .

The path generator tool developed in this thesis provides basic facilities for path specification of
manipulators. The following improvements can be made to the tool:

� Motion segments are currently from standstill to standstill. It is desirable that segments

can start and end with a speed unequal to zero. This allows smooth continuous
movements.

� Currently, only arc and straight line movements are supported. This should be extended

with elliptical and spiral movements.

� Copy, cut and paste functions should be added to the tool for easy editing of path

specifications.

� Checking the specified path by means of a 3d plot should occur within the tool itself.

Appendix A

49

Appendix A

Working principle and drive of linear motor.

A.1 Working principle of linear motor

The brushless permanent-magnet motor configuration consists of a base plate (stator), covered
with permanent magnets, and a sliding part (translator) that holds the electric coils and their iron
cores, see figure A.1. By applying a three-phase current to the coils, a sequence of attracting and
repelling forces between the poles and the permanent magnets will be generated. An incremental
linear encoder measures the position of the translator.

To increase the efficiency of the motor, iron cores are placed in the coils. These iron cores have
a magnetic interaction with the permanent magnets on the base plate. This interaction, regardless
whether there is a current in the coils or not, results in a force that tries to move the translator
into stable detent positions. This phenomenon is known as cogging. Because of the spatial
distribution of the magnets with a period of 12 [mm] a stable detent position is also found every
12 [mm].

A.2 Drive of linear motor

To obtain the right sequence of the attracting and repelling forces for the movement
commutation is needed. There are several commutation methods, like trapezoidal and sine wave.
The best performance is achieved with sine wave commutation, which is also the most
computing effort costing. The currents trough the individual coils depends on the needed force

N

S

 base plate

translator

N

S

S

N

S

N

N

S

v

ΦC ΦAΦA ΦB

Figure A.1 Working principle of the linear motor. The indicated
lines are the flux lines of the permanent magnets.

Appendix A

50

for the movement and the relative position of the coil with respect to the magnets. In figure A.2
the principle of commutation is explained. In the figure only one coil is given. Because of the
three-phase configuration of the coils the current through the other coils are 120° shifted. The
colour of the coil gives the amount of current and the N or S symbol gives the pole, which
depends on the sign of the current. Darker colours represent larger currents. The direction of the
movement can be changed by applying a phase shift of 180°to the current. Because of the sine
function this is the same as changing the sign of the reference current.

The commutation can be written out in formulas:

1

2

3

sin(os / 0.024 * 2)

2sin(os / 0.024 * 2)
3

4sin(os / 0.024 * 2)
3

ref

ref

ref

I I P

I I P

I I P

π

ππ

ππ

=

= −

= −

With Pos as the absolute position of the translators, which starts with zero exactly when coil
number 1 is above a North pole magnet on the base plate. There are amplifiers on the market,
which can determine the relative position of the coils with respect to the magnets by measuring
the magnetic field. This is done by Hall sensors in the translator. The Tecnotion linear motor
that is used for the manipulator doesn’t have any Hall sensors. This means that before the
commutation can start, a procedure has to be executed to bring the translator exactly with coil
number one above a North pole. Which North pole doesn’t matter, as long it is a North pole on
the base plate. This procedure is called aligning. A feasible aligning method that can be
performed with the used amplifiers is the so called “ wake and shake” method. This goes as
follows. Coil number one is fed with 0.5 Inom and coil number two with –0.25 Inom. In a three-
phase system the three currents add up to a sum of zero, therefore a current of –0.25 Inom is also
fed to coil number three by the amplifier. Coil number one has become a “strong “ South pole
and coil number two and three “weak” North poles. This causes a force that drives the translator
exactly above the nearest North pole with coil number one. By holding on the currents for about
half a second, the translator is aligned. With this position known the encoder can be reset and
the commutation can start. The maximum displacement during aligning is 12 [mm].

N

S

S

N

N

S

V

N SN N S S

Figure A.2 Principle of commutation. The darkness of the coil
represents the amount of current through it.

Appendix B

51

Appendix B
Hardware overview of the manipulator

B.1 The electronic components

In figure B.1 a block schematic overview of the most important hardware components is given.
The components will be treated in more detail.

B.2 The computer system

The computer system of the manipulator consists of two identical industrial pc’s (IPC’s) in one
housing. The computers are linked via a TCP/IP Link. System I, a Windows NT machine, will

Computer I Computer II

DAC

Dig. I/O

Enc. Card

Amplifier

Motor 1

Motor 2

Motor 3

Amp 1

Amp 2

Amp 3

Ch 1

Ch 2

Ch 3

Ch 4

Ch 5

Ch 6

TCP/IP Link

Fig. B.1 Overview of the electronic components.

Appendix B

52

be used for running the Graphical User Interface (GUI) and system II for performing “realtime”
control of the manipulator. System II is running under DOS. This is certainly not a realtime
operating system but has proven to be a stable platform. The DOS machine contains three PC
cards, A DAC plus some digital input, a digital I/O and an encoder card.

B.3 The amplifier

The used amplifiers are three TBL250/10 series in a 19” rack from MTS Automation. The
amplifiers are relatively simple without any commutation logics or intelligence. This means that
commutation to drive the motors must be performed in software. As an input reference for the
three-phase output currents, only Iu and Iv are needed. The third reference current is calculated
internally because the sum of the currents must be zero in a three-phase system. This saves out
one DAC channel per motor. The amplifiers have a current-voltage ratio of 2. A maximum of ±
10 V reference results in a max output current of ± 20 A. The linear motors have a force-current
ratio of 39. The force-voltage ratio is therefore 78.

B.4 The DAC card

The DAC card is an 8 channel 14-bit analog output board from ICP DAS. Only 6 of the 8
channels are used. It has a output modes of ±10 Volt and ±5 Volt. For the manipulator the ±5
Volt mode is used. This results in an maximum output current for the amplifier of ±10 Ampere,
which is feasible for the motors.

B.5 The digital I/O card

The digital I/O card is from the manufacturer Isolation. It has 16 optically isolated inputs and 16
relay outputs. The input voltage is 5-24 volt AC or DC. The I/O card is used to enable the
amplifiers, read in the operations button like ENABLE, START and STOP.

B.6 The Encoder card and the encoders.

The PCL-833 encoder card from Advantech reads in the 3 linear encoders of the motors. The
encoders are from the manufacturer Numerik Jena and have a grating period of 20 [µm]. After
the quadrature and the 5X interpolation factor this results in a resolution of 1.0 [µm].

Appendix C

53

Appendix C

An introduction to XML

C.1 The XML format

Extensible Markup Language (XML), defined by the World Wide Web Consortium (W3C), is a
universal language for describing and exchanging data on the web. It is emerging as a new way
to store and communicate data. Even though its primary application is as the future of the World
Wide Web, it can be used in a variety of situations to structure digital data. XML is a powerful
language that enables a user to store and communicate semi-structure data. XML, like HTML, is
based on tags, and represents documents as trees of element. It also has two sorts of element:
empty and non-empty elements. Moreover, the XML specification defines precise rules that
make document parsing simple. XML specification defines two types of XML document: valid
documents and well-formed documents. In what follows we describe some of the conditions that
well-formed documents must fulfil.

The document instance must conform to the grammar of XML documents. In particular, some
markup constructs are only allowed in specific places.

No attribute may appear more than once in the same start tag.

Attributes must be declared without ambiguity, notably attribute values must be enclosed
between two similar quotation marks.

Non-empty element tags must be properly nested: any non-empty element must be closed by its
end tag before its ancestors.

Empty element tags must contain a slash ‘/’ just before the end bracket.

This is how well formed XML looks like:

<?xml version=”1.0” ?>
<!--comment a peace of well formed xml code -->
<myMessage>
 <message>Welcome to XML!</message>
</myMessage>

The same code viewed with Internet Explorer:

Appendix C

54

C.2 XML Schemas

Schemas are to define an XML document’s structure, but an XML document is not required to
have a corresponding schema. However, schemas are often recommended to ensure document
conformity. Schemas specify an XML document’s structure and are themselves also defined
using XML.

An XML document that conforms to a schema document is valid and a document that dose not
conform is invalid. Now, there are two major types of schema models, one created by Microsoft
and the other by W3C. In this thesis, we use the W3C XML Schemas to describe the structure
and element content of our XML documents for storing path information.

Appendix C

55

C.3 Structure of the XML path file

The XML path file that is stored and converted to a reference sample file has a specified
structure. It could be modified directly in a text editor, but it is recommended to do this only
within the Path Generator tool. The path file is validated against his schema “move.xsd”. There
is no limit to the number of motion segments and waits that can be added to a motion. Beneath
an example of a stored reference path is given in xml format.

<?xml version="1.0"?>
<!-- Created with XML Path Generator Imotec bv -->
<!-- Created on 5-3-2003 at 21:02:29 -->
<move xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="move.xsd">
 <description>Demonstrator path for Imotec manipulator</description>
 <starting_point dim="3">
 <coord>0.0</coord>
 <coord>0.0</coord>
 <coord>0.0</coord>
 </starting_point>
 <composite_path>
 <path>
 <segment>
 <motion>
 <scurve>
 <max_v>.5</max_v>
 <max_a>.2</max_a>
 <max_d>.2</max_d>
 <max_jerk>100</max_jerk>
 </scurve>
 </motion>
 <shape>
 <straight>
 <distance dim="3">
 <coord>.15</coord>
 <coord>0</coord>
 <coord>0</coord>
 </distance>
 </straight>
 </shape>
 </segment>
 </path>
 <wait>0.75</wait>
 <path>
 <segment>
 <motion>
 <trapezoid>
 <max_v>.5</max_v>
 <max_a>.2</max_a>
 <max_d>.2</max_d>
 </trapezoid>
 </motion>
 <shape>
 <arc>
 <distance dim="3">
 <coord>-.15</coord>
 <coord>.15</coord>
 <coord>.05</coord>
 </distance>
 <angle>less_than_pi</angle>
 <radius>.15</radius>
 <aux_point dim="3">
 <coord>-.15</coord>
 <coord>0</coord>
 <coord>.025</coord>
 </aux_point>
 </arc>
 </shape>
 </segment>
 </path>
 </composite_path>
</move>

Appendix C

56

Appendix D

57

Appendix D

Controller settings

D.1 Identifying the plant model

For obtaining a plant model to come to a controller design, the manipulator is divided in to three
identical parts. Solving the design for one part gives a solution to the total control problem of
the manipulator. Such a part that is used as a model consists of one motor attached to the plateau
by the arms. This results in a fourth order plant model. It is expected that the dominant stiffness
of this model is located in the arms and joints. In figure D.1 an iconic diagram of the model is
given.

F m2 m1

c

This type of model is called a Flexible Mechanism. The following parameters are given:

Mass of the end-effector with load: m1 = 1…6 [kg]

Mass of the motor: m2 = 2 [kg]

Total mass m = 8 [kg]

The value of the spring constant c for the arms and joints are not known because of the complex
construction. The position measurement is done on the motor. This leads to a concept AR
transfer function. In the next section a PID feedback compensator will be designed for the model
with unknown parameter c.

Fig. D.1 Iconic diagram of the model that is used for controller design.

Appendix D

58

D.2 PID compensator design

For designing the PID compensator, the procedure as described in [Coelingh, 2000] is followed.

The steps for this procedure are:

1. Determine the desired bandwidth ωb.

2. Determine the total mass to be displaced.

3. Determine the amount of phase lead by choosing β, a practical value for β is 0.1

which gives a phase lead of 55º.

4. Determine the value of the derivative time constant Td according to:

1
2d

b

T
ω β

= [D-1]

5. Determine the proportional gain K to obtain the desired bandwidth ωb by:

2 2
2

2 2

12
1

b d
b

b d

TK m
T

ω βω
ω

 +
=  + 

 [D-2]

6. Determine the integral time constant Ti in order to obtain a desired gain at low

frequencies. Avoid interfering with the derivative and proportional action.

7. Determine the high frequency roll-of time constant Th to suppress the disturbance of

noise by:
h dT Tβ< [D-3]

The desired bandwidth ωb cannot be specified well due to uncertainty in the spring constant of
the arms. Therefore, a number of controller settings are calculated for different bandwidths.
These can be implemented in the actual controller, starting with the lower bandwidth parameters
and improving to higher bandwidths without oscillating. In table D.1 the parameters are given
for the different bandwidths.

ωb [rad/s] K [N/m] Td [s] Ti [s] Th [s]

50 14286 0.0316 0.4 18.6 10-5

100 57143 0.0158 0.2 9.5 10-5

150 128570 0.0105 0.2 6.3 10-5

200 228570 0.0079 0.1 4.7 10-5

250 357140 0.0063 0.1 3.8 10-5

Table D.1 Parameters of the controller settings for different desired bandwidths.

Appendix E

59

Appendix E

Total MAC system XML source code

E.1 The Main agent XML code

<?xml version="1.0"?>
<mac xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MacSchema.xsd">
 <name>TriPod2</name>
 <interface>
 <ports>
 <input>
 <type>TwenteSensor</type>
 <name>encoder1</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>encoder2</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>encoder3</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>startbutton</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>emergencybutton</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>s1up</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>s1down</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>s2up</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>s2down</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>s3up</name>
 </input>
 <input>
 <type>TwenteSensor</type>
 <name>s3down</name>
 </input>
 <output>
 <type>TwenteActuator</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>TwenteActuator</type>
 <name>voltage2</name>
 </output>

Appendix E

60

 <output>
 <type>TwenteActuator</type>
 <name>voltage3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>OverallController</type>
 <name>overallController</name>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>stopbutton.output</from>
 <to>overallController.stopbutton</to>
 </connection>
 <connection>
 <from>startbutton.output</from>
 <to>overallController.startbutton</to>
 </connection>
 <connection>
 <from>emergencybutton.output</from>
 <to>overallController.emergencybutton</to>
 </connection>
 <connection>
 <from>encoder3.output</from>
 <to>overallController.Z3</to>
 </connection>
 <connection>
 <from>s1up.output</from>
 <to>overallController.s1up</to>
 </connection>
 <connection>
 <from>s1down.output</from>
 <to>overallController.s1down</to>
 </connection>
 <connection>
 <from>s2up.output</from>
 <to>overallController.s2up</to>
 </connection>
 <connection>
 <from>s2down.output</from>
 <to>overallController.s2down</to>
 </connection>
 <connection>
 <from>s3up.output</from>
 <to>overallController.s3up</to>
 </connection>
 <connection>
 <from>s3down.output</from>
 <to>overallController.s3down</to>
 </connection>
 <connection>
 <from>overallController.voltage1</from>
 <to>voltage1.input</to>
 </connection>
 <connection>
 <from>overallController.voltage2</from>
 <to>voltage2.input</to>
 </connection>
 <connection>
 <from>overallController.voltage3</from>
 <to>voltage3.input</to>
 </connection>
 <connection>
 <from>encoder1.output</from>
 <to>overallController.Z1</to>
 </connection>
 <connection>
 <from>encoder2.output</from>
 <to>overallController.Z2</to>
 </connection>
 </connections>
 </composite>

Appendix E

61

 </implementation>
</mac>

E.2 The OverallAgent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>OverallController</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <input>
 <type>real</type>
 <name>s1up</name>
 </input>
 <input>
 <type>real</type>
 <name>s1down</name>
 </input>
 <input>
 <type>real</type>
 <name>s2up</name>
 </input>
 <input>
 <type>real</type>
 <name>s2down</name>
 </input>
 <input>
 <type>real</type>
 <name>s3up</name>
 </input>
 <input>
 <type>real</type>
 <name>s3down</name>
 </input>
 <input>
 <type>real</type>
 <name>emergencybutton</name>
 </input>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>startbutton</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 </ports>

Appendix E

62

 </interface>
 <implementation>
 <composite>
 <cagency>
<!-- Insert Startup agent here -->
 <cagent>
 <type>Alarm</type>
 <name>alarm</name>
 </cagent>
 <cagent>
 <type>GuardedEmergency</type>
 <name>emergency</name>
 </cagent>
 <cagent>
 <type>GuardedStandard</type>
 <name>standard</name>
 </cagent>
 </cagency>
 <coordination>
 <class>FixedPriorityCoordinator</class>
 <name>fixedPriorityMO1</name>
 </coordination>
 <connections>
 <connection>
 <from>Z1</from>
 <to>alarm.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>alarm.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>alarm.Z3</to>
 </connection>
 <connection>
 <from>alarm.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>alarm.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>alarm.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>emergencybutton</from>
 <to>emergency.emergencybutton</to>
 </connection>
 <connection>
 <from>s1up</from>
 <to>alarm.s1up</to>
 </connection>
 <connection>
 <from>s1down</from>
 <to>alarm.s1down</to>
 </connection>
 <connection>
 <from>s2up</from>
 <to>alarm.s2up</to>
 </connection>
 <connection>
 <from>s2down</from>
 <to>alarm.s2down</to>
 </connection>
 <connection>
 <from>s3up</from>
 <to>alarm.s3up</to>
 </connection>
 <connection>
 <from>s3down</from>
 <to>alarm.s3down</to>
 </connection>
 <connection>
 <from>Z1</from>

Appendix E

63

 <to>emergency.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>emergency.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>emergency.Z3</to>
 </connection>
 <connection>
 <from>emergency.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>emergency.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>emergency.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>standard.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>standard.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>standard.Z3</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>standard.stopbutton</to>
 </connection>
 <connection>
 <from>startbutton</from>
 <to>standard.startbutton</to>
 </connection>
 <connection>
 <from>standard.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>standard.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>standard.voltage3</from>
 <to>voltage3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.3 The Alarm agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Alarm</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>Z1</name>

Appendix E

64

 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <input>
 <type>real</type>
 <name>s1up</name>
 </input>
 <input>
 <type>real</type>
 <name>s1down</name>
 </input>
 <input>
 <type>real</type>
 <name>s2up</name>
 </input>
 <input>
 <type>real</type>
 <name>s2down</name>
 </input>
 <input>
 <type>real</type>
 <name>s3up</name>
 </input>
 <input>
 <type>real</type>
 <name>s3down</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>Tm</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>2.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Ho</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Hm</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>samplingtime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>

Appendix E

65

 <state>
 <type>boolean</type>
 <name>goAktiv</name>
 </state>
 <state>
 <type>real</type>
 <name>zcalc</name>
 </state>
 <state>
 <type>real</type>
 <name>radc</name>
 </state>
 </states>
 <start><![CDATA[
{
 zcalc = 0.0;
 radc = 0.0;
 goAktiv = false;
}
]]></start>
 <initialize><![CDATA[
{
 voltage1 = 0.0;
 voltage2 = 0.0;
 voltage3 = 0.0;
}
]]></initialize>
 <activation><![CDATA[
{

 if (goAktiv)
 return 1.0;
 else
 return 0.0;
}
]]></activation>
 <calculate><![CDATA[
{
 voltage1 = 0.0;
 voltage2 = 0.0;
 voltage3 = 0.0;
}
]]></calculate>
 <update><![CDATA[
{

 radc = 0.82 * sqrt(Z1*Z1 - Z1*Z2 - Z1*Z3 + Z2*Z2 - Z2*Z3 + Z3*Z3);

 zcalc = (Z1 + Z2 + Z3)/3.0 + 1.355*(0.202681 - radc*radc) - 0.301201
 if(radc>0.17 || zcalc>0.234)
 goAktiv = true;

}
]]></update>
 </elementary>
 </implementation>
</cagentclass>

E.4 The GuardedEmergency agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GuardedEmergency</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>emergencybutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>

Appendix E

66

 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Emergency</type>
 <name>em1</name>
 </cagent>
 <cagent>
 <type>ErrorGuard</type>
 <name>eg</name>
 </cagent>
 </cagency>
 <coordination>
 <class>MasterSlaveCoordinator</class>
 <name>c1</name>
 </coordination>
 <connections>
 <connection>
 <from>emergencybutton</from>
 <to>em1.emergencybutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>em1.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>em1.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>em1.Z3</to>
 </connection>
 <connection>
 <from>em1.voltage1</from>
 <to>eg.voltageIn1</to>
 </connection>
 <connection>
 <from>em1.voltage2</from>
 <to>eg.voltageIn2</to>
 </connection>
 <connection>
 <from>em1.voltage3</from>
 <to>eg.voltageIn3</to>
 </connection>
 <connection>
 <from>em1.error1</from>
 <to>eg.error1</to>
 </connection>
 <connection>
 <from>em1.error2</from>
 <to>eg.error2</to>
 </connection>
 <connection>

Appendix E

67

 <from>em1.error3</from>
 <to>eg.error3</to>
 </connection>
 <connection>
 <from>eg.voltageOut1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>eg.voltageOut2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>eg.voltageOut3</from>
 <to>voltage3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.5 The ErrorGuard agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>ErrorGuard</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>voltageIn1</name>
 </input>
 <input>
 <type>real</type>
 <name>voltageIn2</name>
 </input>
 <input>
 <type>real</type>
 <name>voltageIn3</name>
 </input>
 <input>
 <type>real</type>
 <name>error1</name>
 </input>
 <input>
 <type>real</type>
 <name>error2</name>
 </input>
 <input>
 <type>real</type>
 <name>error3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltageOut1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltageOut2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltageOut3</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>bound</name>
 <defaultvalue>0.005</defaultvalue>
 </parameterdef>

Appendix E

68

 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>real</type>
 <name>factor</name>
 </state>
 </states>
 <start><![CDATA[
{
 factor = 1.0;
}
]]></start>
 <activation><![CDATA[
{
 return 1.0;
}
]]></activation>
 <calculate><![CDATA[{
 if (error1>=bound)
 factor = 0.0;
 if (error2>=bound)
 factor = 0.0;
 if (error3>=bound)
 factor = 0.0;

 voltageOut1 = factor * voltageIn1;
 voltageOut2 = factor * voltageIn2;
 voltageOut3 = factor * voltageIn3;
}
]]></calculate>
 </elementary>
 </implementation>
</cagentclass>

E.6 The Emergency agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Emergency</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>emergencybutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>

Appendix E

69

 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Brake</type>
 <name>brakeEmerg</name>
 <parameters>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 <parameter>
 <name>K</name>
 <value>5.0</value>
 </parameter>
 <parameter>
 <name>BW</name>
 <value>5.0</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>GoSteadyAllEmerg</type>
 <name>goSteadyAllEmerg</name>
 </cagent>
 </cagency>
 <coordination>
 <class>FixedPriorityCoordinator</class>
 <name>fixedPriorityMO6</name>
 </coordination>
 <connections>
 <connection>
 <from>emergencybutton</from>
 <to>brakeEmerg.activationinput</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>brakeEmerg.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>brakeEmerg.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>brakeEmerg.Z3</to>
 </connection>
 <connection>
 <from>brakeEmerg.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>brakeEmerg.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>brakeEmerg.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>brakeEmerg.error1</from>
 <to>error1</to>
 </connection>

Appendix E

70

 <connection>
 <from>brakeEmerg.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>brakeEmerg.error3</from>
 <to>error3</to>
 </connection>
 <connection>
 <from>emergencybutton</from>
 <to>goSteadyAllEmerg.emergencybutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>goSteadyAllEmerg.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goSteadyAllEmerg.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>goSteadyAllEmerg.Z3</to>
 </connection>
 <connection>
 <from>goSteadyAllEmerg.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>goSteadyAllEmerg.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>goSteadyAllEmerg.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>goSteadyAllEmerg.error1</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>goSteadyAllEmerg.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>goSteadyAllEmerg.error3</from>
 <to>error3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.7 The Brake agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Brake</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>activationinput</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>

Appendix E

71

 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>BW</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>boolean</type>
 <name>isAktive</name>
 </state>
 <state>
 <type>real</type>
 <name>previousZ1</name>
 </state>
 <state>
 <type>real</type>
 <name>previousZ2</name>
 </state>
 <state>
 <type>real</type>
 <name>previousZ3</name>
 </state>
 <state>
 <type>real</type>
 <name>speed1</name>
 </state>
 <state>
 <type>real</type>
 <name>speed2</name>
 </state>
 <state>

Appendix E

72

 <type>real</type>
 <name>speed3</name>
 </state>
 <state>
 <type>real</type>
 <name>refspeed1</name>
 </state>
 <state>
 <type>real</type>
 <name>refspeed2</name>
 </state>
 <state>
 <type>real</type>
 <name>refspeed3</name>
 </state>
 <state>
 <type>real</type>
 <name>speedstep1</name>
 </state>
 <state>
 <type>real</type>
 <name>speedstep2</name>
 </state>
 <state>
 <type>real</type>
 <name>speedstep3</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y1</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y1</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y2</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y2</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y3</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y3</name>
 </state>
 <state>
 <type>real</type>
 <name>BWrad</name>
 </state>
 <state>
 <type>real</type>
 <name>y1</name>
 </state>
 <state>
 <type>real</type>
 <name>y2</name>
 </state>
 <state>
 <type>real</type>
 <name>y3</name>
 </state>
 </states>
 <start><![CDATA[
{
 BWrad = BW*2*3.1415926536;
 isAktive = false;
}
]]></start>
 <initialize><![CDATA[
{
 speedstep1 = (Z1 - previousZ1) / sampletime;

Appendix E

73

 speedstep2 = (Z2 - previousZ2) / sampletime;
 speedstep3 = (Z3 - previousZ3) / sampletime;

 y1 = 0;
 y2 = 0;
 y3 = 0;

 voltage1 = 0.0;
 voltage2 = 0.0;
 voltage3 = 0.0;
}
]]></initialize>
 <finalize><![CDATA[
{
 speed1 = 0.0;
 speed2 = 0.0;
 speed3 = 0.0;
}
]]></finalize>
 <activation><![CDATA[
{
 if (isAktive)
 return 1.0;
 else
 return 0.0;
}
]]></activation>
 <calculate><![CDATA[
{
 s2y1 = BWrad*BWrad*(speedstep1 - y1) - 1.4142*BWrad*s1y1;
 s1y1 = s1y1 + s2y1*sampletime;
 y1 = y1 + s1y1*sampletime;

 s2y2 = BWrad*BWrad*(speedstep2 - y2) - 1.4142*BWrad*s1y2;
 s1y2 = s1y2 + s2y2*sampletime;
 y2 = y2 + s1y2*sampletime;

 s2y3 = BWrad*BWrad*(speedstep3 - y3) - 1.4142*BWrad*s1y3;
 s1y3 = s1y3 + s2y3*sampletime;
 y3 = y3 + s1y3*sampletime;

 refspeed1 = speedstep1 - y1;
 refspeed2 = speedstep2 - y2;
 refspeed3 = speedstep3 - y3;

 speed1 = (Z1 - previousZ1) / sampletime;
 speed2 = (Z2 - previousZ2) / sampletime;
 speed3 = (Z3 - previousZ3) / sampletime;

 error1 = refspeed1 - speed1;
 error2 = refspeed2 - speed2;
 error3 = refspeed3 - speed3;

 voltage1 = error1 * K;
 voltage2 = error2 * K;
 voltage3 = error3 * K;

 if (fabs(speed1)< 0.02 && fabs(speed2)<0.02 && fabs(speed2)<0.02)
 isAktive = false;
}
]]></calculate>
 <update><![CDATA[
{
 if (activationinput == 1.0)
 isAktive = true;

 speed1 = (Z1 - previousZ1) / sampletime;
 speed2 = (Z2 - previousZ2) / sampletime;
 speed3 = (Z3 - previousZ3) / sampletime;

 previousZ1 = Z1;
 previousZ2 = Z2;
 previousZ3 = Z3;
}
]]></update>
 </elementary>

Appendix E

74

 </implementation>
</cagentclass>

E.8 The GosteadyAllEmerg agent code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoSteadyAllEmerg</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>emergencybutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>GoSteadyEmerg</type>
 <name>goSteady1Emerg</name>
 </cagent>
 <cagent>
 <type>GoSteadyEmerg</type>
 <name>goSteady2Emerg</name>
 </cagent>
 <cagent>
 <type>GoSteadyEmerg</type>
 <name>goSteady3Emerg</name>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>emergencybutton</from>
 <to>goSteady1Emerg.emergencybutton</to>

Appendix E

75

 </connection>
 <connection>
 <from>Z1</from>
 <to>goSteady1Emerg.Z</to>
 </connection>
 <connection>
 <from>emergencybutton</from>
 <to>goSteady2Emerg.emergencybutton</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goSteady2Emerg.Z</to>
 </connection>
 <connection>
 <from>emergencybutton</from>
 <to>goSteady3Emerg.emergencybutton</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>goSteady3Emerg.Z</to>
 </connection>
 <connection>
 <from>goSteady1Emerg.voltage</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>goSteady2Emerg.voltage</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>goSteady3Emerg.voltage</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>goSteady1Emerg.error</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>goSteady2Emerg.error</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>goSteady3Emerg.error</from>
 <to>error3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.9 The GosteadyEmerg agent code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoSteadyEmerg</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>emergencybutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>error</name>

Appendix E

76

 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Accelerate</type>
 <name>accelerate</name>
 <parameters>
 <parameter>
 <name>endspeed</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>endposZ</name>
 <value>-0.1</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 <parameter>
 <name>K</name>
 <value>5.0</value>
 </parameter>
 <parameter>
 <name>BW</name>
 <value>3.0</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>GoPosEmerg</type>
 <name>goPosEmerg</name>
 <parameters>
 <parameter>
 <name>K</name>
 <value>80</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>0.02</value>
 </parameter>
 <parameter>
 <name>N</name>
 <value>10.0</value>
 </parameter>
 <parameter>
 <name>Ti</name>
 <value>1000</value>
 </parameter>
 <parameter>
 <name>minimum</name>
 <value>-5</value>
 </parameter>
 <parameter>
 <name>maximum</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>MV_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>output_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 <parameter>
 <name>BW</name>
 <value>3.0</value>
 </parameter>
 <parameter>

Appendix E

77

 <name>EndposZ</name>
 <value>-0.1</value>
 </parameter>
 </parameters>
 </cagent>
 </cagency>
 <coordination>
 <class>FixedPriorityCoordinator</class>
 <name>fixedPriorityMO4</name>
 </coordination>
 <connections>
 <connection>
 <from>emergencybutton</from>
 <to>accelerate.activationinput</to>
 </connection>
 <connection>
 <from>Z</from>
 <to>accelerate.Z</to>
 </connection>
 <connection>
 <from>accelerate.voltage</from>
 <to>voltage</to>
 </connection>
 <connection>
 <from>accelerate.error</from>
 <to>error</to>
 </connection>
 <connection>
 <from>emergencybutton</from>
 <to>goPosEmerg.emergencybutton</to>
 </connection>
 <connection>
 <from>Z</from>
 <to>goPosEmerg.Z</to>
 </connection>
 <connection>
 <from>goPosEmerg.voltage</from>
 <to>voltage</to>
 </connection>
 <connection>
 <from>goPosEmerg.error</from>
 <to>error</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.10 The Accelerate agent

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Accelerate</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>activationinput</name>
 </input>
 <input>
 <type>real</type>
 <name>Z</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>error</name>

Appendix E

78

 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>endspeed</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>endposZ</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>BW</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>boolean</type>
 <name>isAktive</name>
 </state>
 <state>
 <type>real</type>
 <name>previousZ</name>
 </state>
 <state>
 <type>real</type>
 <name>currspeed</name>
 </state>
 <state>
 <type>real</type>
 <name>speed</name>
 </state>
 <state>
 <type>real</type>
 <name>refspeed</name>
 </state>
 <state>
 <type>real</type>
 <name>speedstep</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y</name>
 </state>
 <state>
 <type>real</type>
 <name>BWrad</name>
 </state>
 <state>
 <type>real</type>
 <name>y</name>
 </state>
 </states>
 <start><![CDATA[
{
 BWrad = BW*2*3.1415926536;

Appendix E

79

 isAktive = false;
}
]]></start>
 <initialize><![CDATA[
{
 currspeed = (Z - previousZ) / sampletime;

 speedstep = currspeed - endspeed;

 if (endposZ<Z)
 speedstep = -speedstep;

 y = 0;

 voltage = 0.0;
}
]]></initialize>
 <finalize><![CDATA[
{
 speed = 0.0;
}
]]></finalize>
 <activation><![CDATA[
{
 if (isAktive)
 return 1.0;
 else
 return 0.0;
}
]]></activation>
 <calculate><![CDATA[
{
 s2y = BWrad*BWrad*(speedstep - y) - 1.4142*BWrad*s1y;
 s1y = s1y + s2y*sampletime;
 y = y + s1y*sampletime;

 refspeed = currspeed - y;

 speed = (Z - previousZ) / sampletime;

 error = refspeed - speed;
 voltage = error * K;

 if (fabs(Z-endposZ)< 0.02)
 isAktive = false;
}
]]></calculate>
 <update><![CDATA[
{
 if (activationinput == 1.0)
 isAktive = true;

 speed = (Z - previousZ) / sampletime;

 previousZ = Z;
}
]]></update>
 </elementary>
 </implementation>
</cagentclass>

E.11 The GoPosEmerg agent

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoPosEmerg</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>emergencybutton</name>

Appendix E

80

 </input>
 <input>
 <type>real</type>
 <name>Z</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>error</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>20</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>0.02</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>N</name>
 <defaultvalue>10</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Ti</name>
 <defaultvalue>1000</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>minimum</name>
 <defaultvalue>-5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maximum</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>MV_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>output_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>BW</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>EndposZ</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>real</type>

Appendix E

81

 <name>scaled_MV</name>
 </state>
 <state>
 <type>real</type>
 <name>factor</name>
 </state>
 <state>
 <type>real</type>
 <name>uD</name>
 </state>
 <state>
 <type>real</type>
 <name>uI</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError</name>
 </state>
 <state>
 <type>boolean</type>
 <name>isAktive</name>
 </state>
 <state>
 <type>real</type>
 <name>refpos</name>
 </state>
 <state>
 <type>real</type>
 <name>currpos</name>
 </state>
 <state>
 <type>real</type>
 <name>posstep</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y</name>
 </state>
 <state>
 <type>real</type>
 <name>BWrad</name>
 </state>
 <state>
 <type>real</type>
 <name>y</name>
 </state>
 </states>
 <start><![CDATA[
{
 BWrad = BW*2*3.1415926536;
 isAktive = false;
}
]]></start>
 <initialize><![CDATA[
{
 currpos = Z;

 posstep = EndposZ - currpos;

 prevError=0.0;

 y = 0;

 voltage = 0.0;
}
]]></initialize>
 <finalize><![CDATA[
{
}

Appendix E

82

]]></finalize>
 <activation><![CDATA[
{
 if (isAktive)
 return 1.0;
 else
 return 0.0;
}
]]></activation>
 <calculate><![CDATA[
{
 s2y = BWrad*BWrad*(posstep - y) - 1.4142*BWrad*s1y;
 s1y = s1y + s2y*sampletime;
 y = y + s1y*sampletime;

 refpos = currpos + y;

 scaled_MV = MV_scale * Z;
 error = refpos - scaled_MV;

 factor = 1 / (sampletime + Td / N);

 uD = factor * (sampletime * K *error + Td * K * (error - prevError) + Td * uD / N);

 uI = uI + sampletime * uD / Ti ;

 ideal_output = uI + uD;

 voltage = output_scale * ideal_output;

 if (voltage<minimum)
 voltage=minimum;
 if (voltage>maximum)
 voltage=maximum;

 prevError=error;
}
]]></calculate>
 <update><![CDATA[
{
 if (emergencybutton == 1.0)
 isAktive = true;
}
]]></update>
 </elementary>
 </implementation>
</cagentclass>

E.12 The GuardedStandard agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GuardedStandard</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>startbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>

Appendix E

83

 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Standard</type>
 <name>standard1</name>
 </cagent>
 <cagent>
 <type>ErrorGuard</type>
 <name>eg</name>
 </cagent>
 </cagency>
 <coordination>
 <class>MasterSlaveCoordinator</class>
 <name>c1</name>
 </coordination>
 <connections>
 <connection>
 <from>startbutton</from>
 <to>standard1.startbutton</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>standard1.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>standard1.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>standard1.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>standard1.Z3</to>
 </connection>
 <connection>
 <from>standard1.voltage1</from>
 <to>eg.voltageIn1</to>
 </connection>
 <connection>
 <from>standard1.voltage2</from>
 <to>eg.voltageIn2</to>
 </connection>
 <connection>
 <from>standard1.voltage3</from>
 <to>eg.voltageIn3</to>
 </connection>
 <connection>
 <from>standard1.error1</from>
 <to>eg.error1</to>
 </connection>
 <connection>
 <from>standard1.error2</from>
 <to>eg.error2</to>
 </connection>
 <connection>
 <from>standard1.error3</from>

Appendix E

84

 <to>eg.error3</to>
 </connection>
 <connection>
 <from>eg.voltageOut1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>eg.voltageOut2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>eg.voltageOut3</from>
 <to>voltage3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.13 The Standard agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Standard</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>startbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>

Appendix E

85

 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>ModeSwitchController</type>
 <name>msc</name>
 </cagent>
 <cagent>
 <type>GravityCompensator</type>
 <name>gc</name>
 </cagent>
 </cagency>
 <coordination>
 <class>FuzzyAdditionCoordinator</class>
 <name>c1</name>
 </coordination>
 <connections>
 <connection>
 <from>startbutton</from>
 <to>msc.startbutton</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>msc.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>msc.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>msc.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>msc.Z3</to>
 </connection>
 <connection>
 <from>msc.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>msc.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>msc.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>msc.error1</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>msc.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>msc.error3</from>
 <to>error3</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>gc.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>gc.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>gc.Z3</to>
 </connection>
 <connection>
 <from>gc.voltage1</from>
 <to>voltage1</to>

Appendix E

86

 </connection>
 <connection>
 <from>gc.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>gc.voltage3</from>
 <to>voltage3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.14 The GravityCompensator agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GravityCompensator</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>Vg</name>
 <defaultvalue>0.25</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <activation><![CDATA[
{
 //here we could return a factor that depends on Z1, Z2 and Z3
 //for the time being, just take 1.0
 return 1.0;
}
]]></activation>
 <calculate><![CDATA[{
 voltage1 = Vg;
 voltage2 = Vg;
 voltage3 = Vg;
}
]]></calculate>
 </elementary>

Appendix E

87

 </implementation>
</cagentclass>

E.15 The ModeSwitchController agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>ModeSwitchController</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>startbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Stop</type>
 <name>stop</name>
 </cagent>
 <cagent>
 <type>Operate</type>
 <name>operate</name>
 </cagent>
<!-- Insert Shutdown agent here -->
 <cagent>
 <type>HoldZeroPID</type>
 <name>holdZeroPID</name>
 <parameters>

Appendix E

88

 <parameter>
 <name>K</name>
 <value>80</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>0.02</value>
 </parameter>
 <parameter>
 <name>N</name>
 <value>10.0</value>
 </parameter>
 <parameter>
 <name>Ti</name>
 <value>500</value>
 </parameter>
 <parameter>
 <name>minimum</name>
 <value>-5</value>
 </parameter>
 <parameter>
 <name>maximum</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>MV_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>output_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 </parameters>
 </cagent>
 </cagency>
 <coordination>
 <class>FixedPriorityCoordinator</class>
 <name>fixedPriorityMO2</name>
 </coordination>
 <connections>
 <connection>
 <from>stopbutton</from>
 <to>stop.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>stop.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>stop.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>stop.Z3</to>
 </connection>
 <connection>
 <from>startbutton</from>
 <to>operate.startbutton</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>operate.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>operate.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>operate.Z2</to>
 </connection>
 <connection>

Appendix E

89

 <from>Z3</from>
 <to>operate.Z3</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>holdZeroPID.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>holdZeroPID.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>holdZeroPID.Z3</to>
 </connection>
 <connection>
 <from>stop.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>stop.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>stop.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>operate.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>operate.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>operate.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>holdZeroPID.output1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>holdZeroPID.output2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>holdZeroPID.output3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>stop.error1</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>stop.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>stop.error3</from>
 <to>error3</to>
 </connection>
 <connection>
 <from>operate.error1</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>operate.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>operate.error3</from>
 <to>error3</to>
 </connection>
 <connection>
 <from>holdZeroPID.error1</from>

Appendix E

90

 <to>error1</to>
 </connection>
 <connection>
 <from>holdZeroPID.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>holdZeroPID.error3</from>
 <to>error3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.16 The Stop agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Stop</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Brake</type>
 <name>brake</name>
 <parameters>
 <parameter>

Appendix E

91

 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 <parameter>
 <name>K</name>
 <value>5.0</value>
 </parameter>
 <parameter>
 <name>BW</name>
 <value>5.0</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>GoSteadyAll</type>
 <name>goSteadyAll</name>
 </cagent>
 </cagency>
 <coordination>
 <class>FixedPriorityCoordinator</class>
 <name>fixedPriorityMO3</name>
 </coordination>
 <connections>
 <connection>
 <from>stopbutton</from>
 <to>brake.activationinput</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>brake.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>brake.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>brake.Z3</to>
 </connection>
 <connection>
 <from>brake.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>brake.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>brake.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>brake.error1</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>brake.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>brake.error3</from>
 <to>error3</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>goSteadyAll.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>goSteadyAll.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goSteadyAll.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>

Appendix E

92

 <to>goSteadyAll.Z3</to>
 </connection>
 <connection>
 <from>goSteadyAll.voltage1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>goSteadyAll.voltage2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>goSteadyAll.voltage3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>goSteadyAll.error1</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>goSteadyAll.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>goSteadyAll.error3</from>
 <to>error3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.17 The GoSteadyAll agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoSteadyAll</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>

Appendix E

93

 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>GoSteady</type>
 <name>goSteady1</name>
 </cagent>
 <cagent>
 <type>GoSteady</type>
 <name>goSteady2</name>
 </cagent>
 <cagent>
 <type>GoSteady</type>
 <name>goSteady3</name>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>stopbutton</from>
 <to>goSteady1.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>goSteady1.Z</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goSteady1.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>goSteady1.Z3</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>goSteady2.stopbutton</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goSteady2.Z</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>goSteady2.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>goSteady2.Z3</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>goSteady3.stopbutton</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>goSteady3.Z</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>goSteady3.Z3</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goSteady3.Z2</to>
 </connection>
 <connection>
 <from>goSteady1.voltage</from>
 <to>voltage1</to>
 </connection>

Appendix E

94

 <connection>
 <from>goSteady2.voltage</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>goSteady3.voltage</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>goSteady1.error</from>
 <to>error1</to>
 </connection>
 <connection>
 <from>goSteady2.error</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>goSteady3.error</from>
 <to>error3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.18 The GoSteady agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoSteady</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>error</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>Accelerate</type>
 <name>accelerate</name>
 <parameters>
 <parameter>
 <name>endspeed</name>
 <value>0.7</value>
 </parameter>
 <parameter>
 <name>endposZ</name>
 <value>0.0</value>

Appendix E

95

 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 <parameter>
 <name>K</name>
 <value>5.0</value>
 </parameter>
 <parameter>
 <name>BW</name>
 <value>3.0</value>
 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>GoPos</type>
 <name>goPos</name>
 <parameters>
 <parameter>
 <name>K</name>
 <value>80</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>0.02</value>
 </parameter>
 <parameter>
 <name>N</name>
 <value>10.0</value>
 </parameter>
 <parameter>
 <name>Ti</name>
 <value>1000</value>
 </parameter>
 <parameter>
 <name>minimum</name>
 <value>-5</value>
 </parameter>
 <parameter>
 <name>maximum</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>MV_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>output_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>
 </parameter>
 <parameter>
 <name>BW</name>
 <value>3.0</value>
 </parameter>
 <parameter>
 <name>EndposZ</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>EndposZ2</name>
 <value>0.0</value>
 </parameter>
 <parameter>
 <name>EndposZ3</name>
 <value>0.0</value>
 </parameter>
 </parameters>
 </cagent>
 </cagency>
 <coordination>
 <class>FixedPriorityCoordinator</class>
 <name>fixedPriorityMO4</name>

Appendix E

96

 </coordination>
 <connections>
 <connection>
 <from>stopbutton</from>
 <to>accelerate.activationinput</to>
 </connection>
 <connection>
 <from>Z</from>
 <to>accelerate.Z</to>
 </connection>
 <connection>
 <from>accelerate.voltage</from>
 <to>voltage</to>
 </connection>
 <connection>
 <from>accelerate.error</from>
 <to>error</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>goPos.stopbutton</to>
 </connection>
 <connection>
 <from>Z</from>
 <to>goPos.Z</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>goPos.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>goPos.Z3</to>
 </connection>
 <connection>
 <from>goPos.voltage</from>
 <to>voltage</to>
 </connection>
 <connection>
 <from>goPos.error</from>
 <to>error</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.19 The GoPos agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>GoPos</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>

Appendix E

97

 <type>real</type>
 <name>voltage</name>
 </output>
 <output>
 <type>real</type>
 <name>error</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>20</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>0.02</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>N</name>
 <defaultvalue>10</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Ti</name>
 <defaultvalue>1000</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>minimum</name>
 <defaultvalue>-5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maximum</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>MV_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>output_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>BW</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>EndposZ</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>EndposZ2</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>EndposZ3</name>
 <defaultvalue>0.0</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>

Appendix E

98

 <elementary>
 <states>
 <state>
 <type>real</type>
 <name>scaled_MV</name>
 </state>
 <state>
 <type>real</type>
 <name>factor</name>
 </state>
 <state>
 <type>real</type>
 <name>uD</name>
 </state>
 <state>
 <type>real</type>
 <name>uI</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError</name>
 </state>
 <state>
 <type>boolean</type>
 <name>isAktive</name>
 </state>
 <state>
 <type>real</type>
 <name>refpos</name>
 </state>
 <state>
 <type>real</type>
 <name>currpos</name>
 </state>
 <state>
 <type>real</type>
 <name>posstep</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y</name>
 </state>
 <state>
 <type>real</type>
 <name>BWrad</name>
 </state>
 <state>
 <type>real</type>
 <name>y</name>
 </state>
 </states>
 <start><![CDATA[
{
 BWrad = BW*2*3.1415926536;
 isAktive = false;
}
]]></start>
 <initialize><![CDATA[
{
 currpos = Z;

 posstep = EndposZ - currpos;

 prevError=0.0;

 y = 0;

 voltage = 0.0;
}

Appendix E

99

]]></initialize>
 <finalize><![CDATA[
{
}
]]></finalize>
 <activation><![CDATA[
{
 if (isAktive)
 return 1.0;
 else
 return 0.0;
}
]]></activation>
 <calculate><![CDATA[
{
 s2y = BWrad*BWrad*(posstep - y) - 1.4142*BWrad*s1y;
 s1y = s1y + s2y*sampletime;
 y = y + s1y*sampletime;

 refpos = currpos + y;

 scaled_MV = MV_scale * Z;
 error = refpos - scaled_MV;

 factor = 1 / (sampletime + Td / N);

 uD = factor * (sampletime * K *error + Td * K * (error - prevError) + Td * uD / N);

 uI = uI + sampletime * uD / Ti ;

 ideal_output = uI + uD;

 voltage = output_scale * ideal_output;

 if (voltage<minimum)
 voltage=minimum;
 if (voltage>maximum)
 voltage=maximum;

 prevError=error;
 if ((fabs(Z - EndposZ)< 0.001) && (fabs(Z2 - EndposZ2)<0.001) && (fabs(Z3 -
EndposZ3)<0.001))
 isAktive = false;
}
]]></calculate>
 <update><![CDATA[
{
 if (stopbutton == 1.0)
 isAktive = true;
}
]]></update>
 </elementary>
 </implementation>
</cagentclass>

E.20 The Operate agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>Operate</name>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>startbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>

Appendix E

100

 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>voltage1</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage2</name>
 </output>
 <output>
 <type>real</type>
 <name>voltage3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <composite>
 <cagency>
 <cagent>
 <type>PID</type>
 <name>pidController</name>
 <parameters>
 <parameter>
 <name>K</name>
 <value>50000</value>
 </parameter>
 <parameter>
 <name>Td</name>
 <value>0.008</value>
 </parameter>
 <parameter>
 <name>N</name>
 <value>10.0</value>
 </parameter>
 <parameter>
 <name>Ti</name>
 <value>0.25</value>
 </parameter>
 <parameter>
 <name>minimum</name>
 <value>-5</value>
 </parameter>
 <parameter>
 <name>maximum</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>MV_scale</name>
 <value>1.0</value>
 </parameter>
 <parameter>
 <name>output_scale</name>
 <value>0.012820</value>
 </parameter>
 <parameter>
 <name>sampletime</name>
 <value>0.001</value>

Appendix E

101

 </parameter>
 </parameters>
 </cagent>
 <cagent>
 <type>PathFromFile</type>
 <name>pathFromFile</name>
 </cagent>
 </cagency>
 <connections>
 <connection>
 <from>startbutton</from>
 <to>pathFromFile.startbutton</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>pathFromFile.stopbutton</to>
 </connection>
 <connection>
 <from>startbutton</from>
 <to>pidController.startbutton</to>
 </connection>
 <connection>
 <from>stopbutton</from>
 <to>pidController.stopbutton</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>pidController.MV1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>pidController.MV2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>pidController.MV3</to>
 </connection>
 <connection>
 <from>Z1</from>
 <to>pathFromFile.Z1</to>
 </connection>
 <connection>
 <from>Z2</from>
 <to>pathFromFile.Z2</to>
 </connection>
 <connection>
 <from>Z3</from>
 <to>pathFromFile.Z3</to>
 </connection>
 <connection>
 <from>pathFromFile.Z1ref</from>
 <to>pidController.SP1</to>
 </connection>
 <connection>
 <from>pathFromFile.Z2ref</from>
 <to>pidController.SP2</to>
 </connection>
 <connection>
 <from>pathFromFile.Z3ref</from>
 <to>pidController.SP3</to>
 </connection>
 <connection>
 <from>pidController.output1</from>
 <to>voltage1</to>
 </connection>
 <connection>
 <from>pidController.output2</from>
 <to>voltage2</to>
 </connection>
 <connection>
 <from>pidController.output3</from>
 <to>voltage3</to>
 </connection>
 <connection>
 <from>pidController.error1</from>
 <to>error1</to>
 </connection>

Appendix E

102

 <connection>
 <from>pidController.error2</from>
 <to>error2</to>
 </connection>
 <connection>
 <from>pidController.error3</from>
 <to>error3</to>
 </connection>
 </connections>
 </composite>
 </implementation>
</cagentclass>

E.21 The PathFromFile agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>PathFromFile</name>
 <include><![CDATA["PATHHEAD.H"]]></include>
 <include><![CDATA[<cmath>]]></include>
 <include><![CDATA[<stdio.h>]]></include>
 <interface>
 <ports>

 <input>
 <type>real</type>
 <name>startbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>Z1ref</name>
 </output>
 <output>
 <type>real</type>
 <name>Z2ref</name>
 </output>
 <output>
 <type>real</type>
 <name>Z3ref</name>
 </output>
 </ports>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>boolean</type>
 <name>canAktive</name>
 </state>
 <state>
 <type>boolean</type>
 <name>AtStartPos</name>
 </state>
 <state>
 <type>real</type>
 <name>Z1step</name>

Appendix E

103

 </state>
 <state>
 <type>real</type>
 <name>Z2step</name>
 </state>
 <state>
 <type>real</type>
 <name>Z3step</name>
 </state>
 <state>
 <type>real</type>
 <name>BWrad</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y1</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y1</name>
 </state>
 <state>
 <type>real</type>
 <name>y1</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y2</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y2</name>
 </state>
 <state>
 <type>real</type>
 <name>y2</name>
 </state>
 <state>
 <type>real</type>
 <name>s1y3</name>
 </state>
 <state>
 <type>real</type>
 <name>s2y3</name>
 </state>
 <state>
 <type>real</type>
 <name>y3</name>
 </state>
 <state>
 <type>real</type>
 <name>sampletime</name>
 </state>
 <state>
 <type>real</type>
 <name>BW</name>
 </state>
 <state>
 <type>real</type>
 <name>Z1curr</name>
 </state>
 <state>
 <type>real</type>
 <name>Z2curr</name>
 </state>
 <state>
 <type>real</type>
 <name>Z3curr</name>
 </state>
 </states>
 <start><![CDATA[
{
 sampletime = 0.001;
 BW = 1;

 BWrad = BW*2*3.1415926536;

Appendix E

104

 canAktive = false;
 AtStartPos = false;

 FILE *fp;
 char Dummy[200];
 float f1, f2, f3;
 int FilPos;

 if((fp = fopen("path.egl", "r"))==NULL)
 {
 printf("Cannnot open file...");
 exit(1);
 }

 // get the number of samples and make the arrays

 fgets(Dummy, 200, fp);
 fgets(Dummy, 200, fp);
 fgets(Dummy, 200, fp);
 FilPos = ftell(fp);
 fseek(fp, FilPos + 14, SEEK_SET);
 fscanf(fp,"%u", &NrSamples);
 fgets(Dummy, 200, fp);

 RefArrayZ1 = new double[NrSamples];
 RefArrayZ2 = new double[NrSamples];
 RefArrayZ3 = new double[NrSamples];

 for(index=0;index<NrSamples;index++)
 {
 fscanf(fp,"%f %f %f", &f1, &f2, &f3);
 RefArrayZ1[index] = f1;
 RefArrayZ2[index] = f2;
 RefArrayZ3[index] = f3;
 }

 fclose(fp);
 index = 0;
}
]]></start>
 <initialize><![CDATA[
{
 Z1step = RefArrayZ1[0] - Z1;
 Z2step = RefArrayZ2[0] - Z2;
 Z3step = RefArrayZ3[0] - Z3;

 Z1curr = Z1;
 Z2curr = Z2;
 Z3curr = Z3;

 y1 = 0.0;
 y2 = 0.0;
 y3 = 0.0;

 if((fabs(Z1step) <0.002)&&(fabs(Z2step) <0.002)&&(fabs(Z3step) <0.002))
 AtStartPos = true;
 else
 AtStartPos = false;

 Z1ref = Z1;
 Z2ref = Z2;
 Z3ref = Z3;
 index = 0;
}
]]></initialize>

 <finalize><![CDATA[
{
 canAktive = false;
}
]]></finalize>

Appendix E

105

 <activation><![CDATA[
{

 return canAktive;
}
]]></activation>
 <calculate><![CDATA[
{
 if(AtStartPos)
 {
 if(index<NrSamples)
 {
 Z1ref = RefArrayZ1[index];
 Z2ref = RefArrayZ2[index];
 Z3ref = RefArrayZ3[index];
 index++;
 }
 else
 {
 Z1ref = RefArrayZ1[index-1];
 Z2ref = RefArrayZ2[index-1];
 Z3ref = RefArrayZ3[index-1];
 }
 }
 else
 {
 s2y1 = BWrad*BWrad*(Z1step - y1) - 1.4142*BWrad*s1y1;
 s1y1 = s1y1 + s2y1*sampletime;
 y1 = y1 + s1y1*sampletime;

 s2y2 = BWrad*BWrad*(Z2step - y2) - 1.4142*BWrad*s1y2;
 s1y2 = s1y2 + s2y2*sampletime;
 y2 = y2 + s1y2*sampletime;

 s2y3 = BWrad*BWrad*(Z3step - y3) - 1.4142*BWrad*s1y3;
 s1y3 = s1y3 + s2y3*sampletime;
 y3 = y3 + s1y3*sampletime;

 Z1ref = Z1curr + y1;
 Z2ref = Z2curr + y2;
 Z3ref = Z3curr + y3;

 if((fabs(Z1 - RefArrayZ1[0]) <0.002)&&(fabs(Z2 - RefArrayZ2[0]) <0.002)&&(fabs(Z3
- RefArrayZ3[0]) <0.002))
 AtStartPos = true;

 }
}
]]></calculate>
 <update><![CDATA[
{
 if (startbutton == 1.0)
 canAktive = true;

 if (stopbutton == 1.0)
 canAktive = false;
}
]]></update>
 </elementary>
 </implementation>
</cagentclass>

E.22 The PID agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>PID</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>

Appendix E

106

 <name>startbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>stopbutton</name>
 </input>
 <input>
 <type>real</type>
 <name>SP1</name>
 </input>
 <input>
 <type>real</type>
 <name>SP2</name>
 </input>
 <input>
 <type>real</type>
 <name>SP3</name>
 </input>
 <input>
 <type>real</type>
 <name>MV1</name>
 </input>
 <input>
 <type>real</type>
 <name>MV2</name>
 </input>
 <input>
 <type>real</type>
 <name>MV3</name>
 </input>
 <output>
 <type>real</type>
 <name>output1</name>
 </output>
 <output>
 <type>real</type>
 <name>output2</name>
 </output>
 <output>
 <type>real</type>
 <name>output3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>
 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>10</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>0.02</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>N</name>
 <defaultvalue>10</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Ti</name>
 <defaultvalue>1000</defaultvalue>
 </parameterdef>
 <parameterdef>

Appendix E

107

 <type>real</type>
 <name>minimum</name>
 <defaultvalue>-5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maximum</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>MV_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>output_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>boolean</type>
 <name>canAktive</name>
 </state>
 <state>
 <type>real</type>
 <name>scaled_MV1</name>
 </state>
 <state>
 <type>real</type>
 <name>scaled_MV2</name>
 </state>
 <state>
 <type>real</type>
 <name>scaled_MV3</name>
 </state>
 <state>
 <type>real</type>
 <name>factor</name>
 </state>
 <state>
 <type>real</type>
 <name>uD1</name>
 </state>

 <state>
 <type>real</type>
 <name>uD2</name>
 </state>
 <state>
 <type>real</type>
 <name>uD3</name>
 </state>
 <state>
 <type>real</type>
 <name>uI1</name>
 </state>
 <state>
 <type>real</type>
 <name>uI2</name>
 </state>
 <state>
 <type>real</type>
 <name>uI3</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output1</name>

Appendix E

108

 </state>
 <state>
 <type>real</type>
 <name>ideal_output2</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output3</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError1</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError2</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError3</name>
 </state>
 </states>
 <start><![CDATA[
{
 canAktive = false;
}
]]></start>
 <initialize><![CDATA[
{
 prevError1=0.0;
 prevError2=0.0;
 prevError3=0.0;
}
]]></initialize>
 <finalize><![CDATA[
{
}
]]></finalize>
 <activation><![CDATA[
{
 return canAktive;
}
]]></activation>
 <calculate><![CDATA[{
 scaled_MV1 = MV_scale * MV1;
 scaled_MV2 = MV_scale * MV2;
 scaled_MV3 = MV_scale * MV3;
 error1 = SP1 - scaled_MV1;
 error2 = SP2 - scaled_MV2;
 error3 = SP3 - scaled_MV3;

 factor = 1 / (sampletime + Td / N);

 uD1 = factor * (sampletime * K *error1 + Td * K * (error1 - prevError1) + Td * uD1 / N
);
 uD2 = factor * (sampletime * K *error2 + Td * K * (error2 - prevError2) + Td * uD2 / N
);
 uD3 = factor * (sampletime * K *error3 + Td * K * (error3 - prevError3) + Td * uD3 / N
);

 uI1 = uI1 + sampletime * uD1 / Ti ;
 uI2 = uI2 + sampletime * uD2 / Ti ;
 uI3 = uI3 + sampletime * uD3 / Ti ;

 ideal_output1 = uI1 + uD1;
 ideal_output2 = uI2 + uD2;
 ideal_output3 = uI3 + uD3;

 output1 = output_scale * ideal_output1;
 output2 = output_scale * ideal_output2;
 output3 = output_scale * ideal_output3;

 if (output1<minimum)
 output1=minimum;
 if (output1>maximum)
 output1=maximum;

Appendix E

109

 if (output2<minimum)
 output2=minimum;
 if (output2>maximum)
 output2=maximum;

 if (output3<minimum)
 output3=minimum;
 if (output3>maximum)
 output3=maximum;

 prevError1=error1;
 prevError2=error2;
 prevError3=error3;
}
]]></calculate>
 <update><![CDATA[
{
 if (startbutton == 1.0)
 canAktive = true;
 if (stopbutton == 1.0)
 canAktive = false;

 scaled_MV1 = MV_scale * MV1;
 scaled_MV2 = MV_scale * MV2;
 scaled_MV3 = MV_scale * MV3;
 error1 = SP1 - scaled_MV1;
 error2 = SP2 - scaled_MV2;
 error3 = SP3 - scaled_MV3;
}
]]></update>
 </elementary>
 </implementation>
</cagentclass>

E.23 The HoldZero agent XML code

<?xml version="1.0"?>
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="CagentSchema.xsd">
 <name>HoldZeroPID</name>
 <include><![CDATA[<cmath>]]></include>
 <interface>
 <ports>
 <input>
 <type>real</type>
 <name>Z1</name>
 </input>
 <input>
 <type>real</type>
 <name>Z2</name>
 </input>
 <input>
 <type>real</type>
 <name>Z3</name>
 </input>
 <output>
 <type>real</type>
 <name>output1</name>
 </output>
 <output>
 <type>real</type>
 <name>output2</name>
 </output>
 <output>
 <type>real</type>
 <name>output3</name>
 </output>
 <output>
 <type>real</type>
 <name>error1</name>
 </output>
 <output>
 <type>real</type>

Appendix E

110

 <name>error2</name>
 </output>
 <output>
 <type>real</type>
 <name>error3</name>
 </output>
 </ports>
 <parameterdefs>
 <parameterdef>
 <type>real</type>
 <name>K</name>
 <defaultvalue>20</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Td</name>
 <defaultvalue>0.02</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>N</name>
 <defaultvalue>10</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>Ti</name>
 <defaultvalue>1000</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>minimum</name>
 <defaultvalue>-5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>maximum</name>
 <defaultvalue>5.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>MV_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>output_scale</name>
 <defaultvalue>1.0</defaultvalue>
 </parameterdef>
 <parameterdef>
 <type>real</type>
 <name>sampletime</name>
 <defaultvalue>0.001</defaultvalue>
 </parameterdef>
 </parameterdefs>
 </interface>
 <implementation>
 <elementary>
 <states>
 <state>
 <type>real</type>
 <name>scaled_MV1</name>
 </state>
 <state>
 <type>real</type>
 <name>scaled_MV2</name>
 </state>
 <state>
 <type>real</type>
 <name>scaled_MV3</name>
 </state>
 <state>
 <type>real</type>
 <name>factor</name>
 </state>
 <state>
 <type>real</type>
 <name>uD1</name>

Appendix E

111

 </state>

 <state>
 <type>real</type>
 <name>uD2</name>
 </state>
 <state>
 <type>real</type>
 <name>uD3</name>
 </state>
 <state>
 <type>real</type>
 <name>uI1</name>
 </state>
 <state>
 <type>real</type>
 <name>uI2</name>
 </state>
 <state>
 <type>real</type>
 <name>uI3</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output1</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output2</name>
 </state>
 <state>
 <type>real</type>
 <name>ideal_output3</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError1</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError2</name>
 </state>
 <state>
 <type>real</type>
 <name>prevError3</name>
 </state>
 </states>
 <start><![CDATA[
{
}
]]></start>
 <initialize><![CDATA[
{
 prevError1=0.0;
 prevError2=0.0;
 prevError3=0.0;
}
]]></initialize>
 <finalize><![CDATA[
{
}
]]></finalize>
 <activation><![CDATA[
{
 return 1.0;
}
]]></activation>
 <calculate><![CDATA[{
 scaled_MV1 = MV_scale * Z1;
 scaled_MV2 = MV_scale * Z2;
 scaled_MV3 = MV_scale * Z3;
 error1 = - scaled_MV1;
 error2 = - scaled_MV2;
 error3 = - scaled_MV3;

 factor = 1 / (sampletime + Td / N);

Appendix E

112

 uD1 = factor * (sampletime * K *error1 + Td * K * (error1 - prevError1) + Td * uD1 / N
);
 uD2 = factor * (sampletime * K *error2 + Td * K * (error2 - prevError2) + Td * uD2 / N
);
 uD3 = factor * (sampletime * K *error3 + Td * K * (error3 - prevError3) + Td * uD3 / N
);

 uI1 = uI1 + sampletime * uD1 / Ti ;
 uI2 = uI2 + sampletime * uD2 / Ti ;
 uI3 = uI3 + sampletime * uD3 / Ti ;

 ideal_output1 = uI1 + uD1;
 ideal_output2 = uI2 + uD2;
 ideal_output3 = uI3 + uD3;

 output1 = output_scale * ideal_output1;
 output2 = output_scale * ideal_output2;
 output3 = output_scale * ideal_output3;

 if (output1<minimum)
 output1=minimum;
 if (output1>maximum)
 output1=maximum;

 if (output2<minimum)
 output2=minimum;
 if (output2>maximum)
 output2=maximum;

 if (output3<minimum)
 output3=minimum;
 if (output3>maximum)
 output3=maximum;

 prevError1=error1;
 prevError2=error2;
 prevError3=error3;
}
]]></calculate>
 </elementary>
 </implementation>
</cagentclass>

Bibliography

113

Bibliography

Angeles, J. (2003). Fundamentals of Robotic Mechanical Systems Theory, Methods, and
Algorithms, Second Edition, Springer-Verlag, ISBN: 0-387-95368-X.

Bajracharya, G. (2003). Integrated Design and Implementation Tool for Multi-Agent Controllers
[IDITmac]. MSc thesis, University of Twente, Enschede, The Netherlands.

Coelingh, H. (2000). Design support for motion control systems, PhD thesis, University of
Twente, Enschede, The Netherlands.

De Kruif, B.J., De Vries, T.J.A. (2003). On-line Nonparametric Regression to learn State-
Dependent Disturbances. Control Engineering, University of Twente, Enschede, The
Netherlands.

De Kruif, B.J. Approximation of the plateau position, 20-Sim model. Personal communication.

Deitel, H. M. (2001). XML: how to program, Prentice Hall, ISBN: 0-13-028417-3

Franklin, S., Graesser, A. (1997). “Is It an Agent, or Just a Program?: A Taxonomy for
Autonomous Agents”, Intelligent Agents III: Agent Theories, Architectures, and Languages,
Proceedings of ECAI’96 Workshop(ATAL), Hungary, Aug. 1996 (From Lecture Notes in
Artificial Intelligence 1193, pp. 21-35, 1997).

Küpers, B.E. (1998). Implementation of a control algorithm and safety measures for a
manipulator. MSc thesis, University of Twente, Enschede, The Netherlands.

Schildt, H. (1998). C++: The Complete Reference, Third Edition, McGraw-Hill, ISBN: 0-07-
882476-1

Starrenburg, J.G., De Vries, T.J.A. (1995). Learning vehicle control for the Mobile Autonomous
Robot. RB Electronica, ISSN: 0928-5008, pp. 12-15.

Stramigioli, S. (1998). From Differentiable Manifolds to Interactive Robot Control, PhD thesis,
Delft University of Technology, Delft, The Netherlands.

Van Breemen, A.J.N. (2000). An Agent-Based Multi Controller Systems, A design framework
for complex control problems. PhD thesis, University of Twente, Enschede, The Netherlands.

Van Breemen, A.J.N., De Vries, T.J.A. (2001). Design and implementation of a room thermostat
using an agent-based approach. Control Engineering Practice 9, 233 – 248.

Van De Mast, F. (1992). Safety measures for the OSCAR-6 robot. MSc thesis, University of
Twente, Enschede, The Netherlands.

Velthuis, W.J.R. (2000). Learning feed-forward control - theory, design and applications. PhD
thesis, University of Twente, Enschede, The Netherlands.

De Vries, T.J.A. 20-Sim model. Personal communication.

