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Abstract 
 
 
 

The Control Laboratory at University of Twente has purchased 
an Imotec xyz-manipulator. The manipulator is delivered with 
an open operating system. This thesis treats the design and 
realization of a safe guarded controller system for the Imotec 
manipulator. Safety issues are discussed to make the 
manipulator operate safely for doing research experiments by 
students and staff. This concerns safety of the manipulator 
itself and of the people working with it. The first experiments 
will be concerned with the research on Learning Feed Forward 
Control (LFFC). 
 
The safe guarded controller system is implemented as a Multi 
Agent Controller (MAC) system. The controller is tested in 
simulation (20-Sim) and has proven to work correctly. 
 
The designed controller has largely been implemented on the 
real system and has been found to work according to 
expectations. For a slow, large stroke movement, a maximum 
tracking error of 250 [µm] was found at moments of velocity 

reversal; otherwise, the max tracking error amounted 100 [µm]. 
 
Because of time constraints, the experiments with LFFC have 
not been carried out. 
 
A path generator tool has been developed that can be used for 
creating path for manipulators in general. It creates curves and 
straight movements in (x,y,z). With the tool a reference motion 
can be given up in segments from which afterwards a file is 
created which holds the reference points for the sample times. 
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1 Introduction 
 

1.1 Background 
 
At the Control Engineering Laboratory of the University of Twente (UT) research is done on 
Mechatronic Systems in general and in particular on the role of the controller in it. An ongoing 
project is concerned with Learning Feed-Forward Control (LFFC) [De Kruif, 2003]. To carry 
out experiments for this research, an xyz-manipulator with parallel kinematical configuration has 
been purchased by the UT. The manipulator has been developed and built by the company 
Imotec, which is also a sponsor of the research. The manipulator has been delivered with an 
open controller system, in order to make it possible to implement advanced control and 
identifications algorithms. The first research on the manipulator will be concerned with the 
application of modern function approximators in closed loop control. When doing research, 
people will work closely with the manipulator. Therefore, safety is an important issue. The 
manipulator should operate in a safe manner without causing danger for people working with it 
and without causing damage to itself. 
 

1.2 Learning Feed-Forward Control 
 
For obtaining good performances with classical control systems, the parameters of the controlled 
plant need to be known well. Not knowing the plant parameters accurate enough result in not 
entirely knowing the dynamics of the plant. In many control problems, the plant is given as a 
model of which the parameters are not known exactly. The reasons for this are various, for 
instance: 
 
� Low-precision production processes make the fabricated part to differ from the 

specification. 
� Manufacturing tolerances lead to a spread in dynamic behaviour. 
� Complexity of the plant makes parameter estimation difficult. 
� Changes in plant characteristics as time proceeds. 
� Non-linear effects like friction and cogging. 

 
In many applications the goal is to come to a high precision servo system with low price 
components. In these situations the classical feedback controller demerits. However, the 
principle of LFFC can offer a solution [Velthuis, 2000],[Starrenburg et al, 1995]. In figure 1.1 a 
control loop is given in which a learning component is included in the feed-forward path. In this 
case, this component is a function approximator (FA). 
 

 
Fig. 1.1 A control loop with function approximator. 
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The function approximator realizes an input-output mapping gained by experience. The 
mapping summarizes the examples by a function. This function for instance can be the force that 
is needed to compensate for the friction loss depending on the velocity of the mechanical setup. 
In the depicted control loop, the feedback controller is needed for stability of the closed loop 
system and to present samples for the learning mechanism of the function approximator. The 
function approximator approximates the inverse dynamics of the plant based on the output of the 
feedback controller. After learning, it compensates for the non-linear state dependent behavior 
of the plant. 
 
 

1.3 The Imotec manipulator 
 
The Imotec manipulator, of which a sketch is given in figure 1.2, is a simplified Stewart 
platform with three degrees of freedom namely x, y and z. It is driven by three Tecnotion linear 
motors in vertical direction. For working principle and drive of linear motors, see Appendix A. 
For an overview of the manipulator hardware see Appendix B. 
 
 

 
 
 Fig. 1.2 The Imotec xyz- manipulator. 
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A set of arms in parallelogram construction attached to the translators of the motors, holds a 
platform, which is the end-effector of the manipulator. The joints of the arms allow movement 
only in φ and θ direction, whereas the translators only move in z direction (see figure 1.3). This 
altogether results in an x, y, z motion of the platform. The parallelogram construction of the arms 
restricts rotational movements of the platform. The three arms together also keep the platform in 
the horizontal plane.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The manipulator has a safe work area that is shaped as a cylinder with radius 200 [mm] and 
height 250 [mm]. Although the end-effector of the manipulator can exceed the dimensions of the 
cylinder, it is not recommended because this will cause overloading of the leaf springs from the 
joints. Specifications of the manipulator are: 
 

� Max Payload   5 [kg] 
� Max Speed   1 [m/s] 
� Max Acceleration   30 [m/s2] 
� Max Stroke Lin. Motor 520[mm] 

 
 
The manipulator is given in its functional blocks in figure 1.4. The setup can be divided in three 
major parts: 
 
� The computing system 
� The electrical circuitry and components 
� The mechanical setup. 

 
 
 
 

φi 

θi zi 

arm 

translator 

Fig. 1.3 Joint motion of the parallelogram constructed arms. 
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1.4 The assignment 
 
The electrical circuitry and mechanical setup of the manipulator have been realized and tested. 
To become operational, the manipulator’s computing system needs to be programmed. This 
means that the right actions need to be taken depending on the signals from the electro-cabinet 
and on user input. The objective of the assignment is to develop and realize a safe control 
system. This incorporates the following points: 
 
9 Design and realization of a safeguard system to make it possible to carry out experiments 

with the manipulator without danger for the environment and for the setup itself. 
 
9 Design of a generally applicable tool for path specification of manipulators. 

 
9 Implementation of the path specification tool for the parallel kinematical xyz-

manipulator, including setpoint generation. 
 
9 Implementation of a relatively simple closed loop control system in which a modern 

function approximator is integrated. 

 
 

1.5 Thesis Structure 
 
After this introduction, in chapter 2 safety issues concerning the manipulator will be discussed. 
In chapter 3 these safety issues will be implemented for the Imotec manipulator. In chapter 4, 
path generation in general for manipulators will be discussed. The path generator specific for the 
xyz-manipulator will also be developed in this chapter. In chapter 5 simulations and 
experimental results will be discussed. Finally in chapter 6, the conclusions and 
recommendations are presented. 

 

Fig. 1.4 The manipulator in its functional blocks. 
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2 Design concerning safety issues 
 

2.1 Introduction 
 
Safety concerns two major aspects in manipulators. First and most important is the safety of 
people operating and working with the manipulator. Second, the manipulator should not damage 
itself by some motion. Usually manipulators are placed in industrial environments where people 
do not work closely nearby the manipulator. In case of the Imotec manipulator, people will work 
close to the manipulator when doing research. Therefore considerable attention will be paid to 
human safety. The manipulator is used for doing research in the field of control engineering. It 
is imaginable that a bad controller setting (unstable) can cause unsafe situations. This chapter 
deals with the measures that can be taken to make the manipulator operate safely. There are two 
major causes that can lead to dangerous situations in case of the manipulator. 
 
� Malfunctioning of a component of the manipulator itself.  
� Irresponsible behavior of people in the environment.  

 
First the possible faults of the manipulator itself will be discussed and then faults that can arise 
by the environment. Measures to handle these situations will also be discussed. 
 
 

2.2 Malfunctioning of the manipulator 
 
The Imotec manipulator consists of six basic parts, which can all lead to faults: 
 
� The mechanical structure 
� The linear motors 
� The motor amplifiers 
� The power supply 
� The interface cards 
� The computer system 

 
These parts will be discussed subsequently in the next sections. 
 

2.2.1 Checking the mechanical structure 
 
The mechanical structure of the manipulator is difficult to check automatically during operation. 
A method, which is the most feasible in general, is to compare the response of the manipulator 
with a proper mathematical model [Van De Mast, 1992]. In case of the Imotec manipulator this 
is not applicable for the moment because the position of the end-effector is not measured. Only 
the positions of the translators are measured by means of the linear encoders. For instance, if an 
arm would break, this will not influence the position of the translator much, whereas the 
platform (end-effector) will be positioned totally different. For the moment, no check for 
mechanical structure integrity is done. A feasible measure is to avoid situations that can cause 
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the mechanical structure to break apart. This can be done by assuring that the manipulator 
operates in its safe work area. The encoder readings from the linear motor can be used to 
determine the position of the platform. This means that the forward kinematics of the 
manipulator has to be known. The Imotec manipulator has complex forward kinematics due to 
its parallel configuration. However, the inverse kinematics can be derived easily. When z1, z2 
and z3 are the positions of the translators in z direction, then the following holds:  
 
 

2 2 2
1 1 1

2 2 2
2 2 2

2 2 2
3 3 3

( ) ( )

( ) ( )

( ) ( )

o

o

o

z l x x y y z z

z l x x y y z z

z l x x y y z z

= − − − − − + +

= − − − − − + +

= − − − − − + +

       [2-1] 

 
 
Where l is the known length of the arms and x, y, z are the coordinates of the moving platform. 
x1 is the x position of the translator 1 and y1 its y position. Note that the translators only move in 
z direction, therefore xi and yi are fixed and known. zo is the initial height of the platform in z 
direction when the translators are all in the bottom position (zi = 0, i = 1,2,3) . zo is calculated as: 
 
 

2 2
oz l r= −            [2-2]

  
Where r is the known radius of the circle in which the translators are aligned, see figure 2.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x 

y 

z 

r 

Translator 1

Translator 2Translator 3

Fig. 2.1 Orientation and setup of the translators. 

Platform

(x1, y1) 

(x2, y2) (x3, y3) 
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Equations [2-1] represents the inverse kinematics of the manipulator. We are interested in the 
forward kinematics, i.e., we wish to regard [2-1] as three simultaneous equations with three 
unknowns, (x, y, z). However, this problem cannot be solved explicitly because of its 
complexity; the root function in [2-1] makes this hard. Therefore, an approximation is done [De 
Kruif], to remove the root function. First a transformation is done from Cartesian coordinates to 
cylindrical coordinates by using the following coordinate change: 
 
 

sin( )
cos( )

x p
y p
z z

φ
φ

=
=
=

           [2-3] 

 
 
Where p is the distance between the origin and the position of the platform in the x-y plane. As 
stated earlier the manipulator has a safe work area of cylindrical shape with radius 200 [mm] 
and height 250 [mm]. Therefore the distance p may not exceed 200 [mm]. Hence, we can 
reformulate the safety check as solving [2-1] and [2-3] for p and checking it for the given limit. 
Using the coordination transform of [2-3] in [2-1] results in: 
 
 

2 2 2
1

2 2 2
2

2 2 2
3

2 cos( )

22 cos( )
3
42 cos( )
3

o

o

o

z l r p pr z z

z l r p pr z z

z l r p pr z z

φ

φ π

φ π

= − − − − + +

= − − − − + + +

= − − − − + + +

      [2-4] 

 
We introduce an intermediate function: 
 

2 2 2( , ) 2 cos( )f p l r p prφ φ= − − −         [2-5] 
 
In [2-4] the root function f(p,φ) is still present. A plot thereof is given in figure 2.2. 
 
 

 
 
 

Fig. 2.2 A plot of the root function, 2 2 2( , ) 2 cos( )f p l r p prφ φ= − − − . 
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From the plot can be seen that f(p,φ) has its minimum and maximum on the line where p = pmax 
= 200 [mm]. With l = 541[mm], r = 300[mm] and [ , ]φ π π= −  given, we can derive: 
 
0.20659 ( , ) 0.53167f p φ≤ ≤          [2-6] 
 
f(p,φ) can be converted into f(x) by stating: 
 

( , ) ( )f p f x xφ =           [2-7] 
 
with  
 

2 2 2 2 cos( )x l r p pr φ= − − −          [2-8] 
 
and 
 

2 2
min max[ , ] [0.20659 ,0.53167 ] [0.0427,0.2827]x x x∈ = =      [2-9] 

 
 
A plot of f(x) is given in figure 2.3. 
 
 
 

 
 
 
 
 
By doing a linearization, f(x) can be approximated. The approximation is given by the dashed 
line in figure 2.3. This line is described by: 
 

max min
min min

max min

( ) ( )( ) ( ) ( ) ( )f x f xf x f x f x x x
x x

−
≈ = + −

−
      [2-10] 

     
 
 

Fig. 2.3 The root function f(x); the dashed line is the linearization 
of it. 
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And with the known values filled in: 
 

2 2 2( ) 1.355 2 cos( ) 0.149f x l r p pr φ = − − − +        [2-11] 
 
Substituting equation [2-10] as approximation for f(p,φ) into equations [2-4] gives: 
 

2 2 2
1

2 2 2
2

2 2 2
3

1.355 2 cos( ) 0.149

21.355 2 cos( ) 0.149
3
41.355 2 cos( ) 0.149
3

o

o

o

z l r p pr z z

z l r p pr z z

z l r p pr z z

φ

φ π

φ π

 ≈ − − − − + + − 
 ≈ − − − − + + + −  
 ≈ − − − − + + + −  

         [2-12] 

 
Adding up the equations in [2-12] results in (note that the cosine parts add up to zero): 
 

2 2 2
1 2 3 3 1.355( ) 3 3 0.447oz z z l r p z z+ + ≈ − ⋅ − − + + −      [2-13] 

 
From which it follows that: 

2 2 2 1 2 31.355( ) 0.149
3o

z z zz z l r p + +
+ ≈ − − + +                   [2-14] 

 
Combining the first equation of [2-12] with [2-14] gives: 
 

2 2 2 2 2 2 1 2 3
1 1.355 2 cos( ) 1.355( )

3
z z zz l r p pr l r pφ + + ≈ − − − − + − − +     [2-15] 

 
From which for z1 is obtained: 
 

2 3
1 4.065 cos( )

2
z zz pr φ +

≈ +              [2-16] 

 
Equally for z2 the following can be derived: 
 

1 3
2

24.065 cos( )
3 2

z zz pr φ π +
≈ + +         [2-17] 

 
The equations [2-16] and [2-17] can be generalized into: 
 

cos( )
2cos( )
3

A

A

α φ

β φ π

=

= +
          [2-18] 

 
For which a general solution can be found with the use of Maple as: 
 

2 24 4 4
3 3 3

A α β αβ= + +          [2-19] 
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With 4.065A pr= , 2 3
1 2

z zzα +
= −  and 1 3

2 2
z zzβ +

= − , the following expression is found for 

the approximation of the radius: 
 

2 2 2
1 1 2 1 3 2 2 3 3

0.246
apprp z z z z z z z z z

r
= − − + − +       [2-20] 

 
In figure 2.4 a plot is given of the actual radius of the platform and the approximation of it 
according to [2-20]. 
 
 

 
 
 
 
 
From the plot can be seen that the approximation that is made, varies between 175 [m] and 220 
[mm] depending on φ for p = 200 [mm]. The error that is made is given in figure 2.5. 
 

 
 
 
 
 
  
The threshold value of the safety system to take action should be set at 170 [mm]. The platform 
then can move up to a radius of 200 [mm] depending on φ. 

Fig. 2.4 Approximation of the radius according to [2-20]. 

Fig. 2.5 The error that is made with the approximation of the radius 
according to [2-20]. 
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Also the z direction of the platform has to be checked to ensure that the platform does not 
exceed the cylindrical work area. The height of the platform has to be determined the most 
accurate in the position where it is at the edge of the radius of his work area, that means 

200p ≈ [mm] and 0z ≈  or 250z ≈ [mm]. In this positions the spring leafs of the joint are 
bended the most. 
 
With equation [2-13] and the approximation for the radius [2-20] the following can be stated: 
 

2 2 2
1 2 3 3 1.355( ) 3 3 0.447appr oz z z l r p z z+ + = − ⋅ − − + + −      [2-21] 

 
With the known values filled in, this results in the approximation for checking the z direction of 
the platform: 
 

2 2 21 2 3 1.355( ) 0.149
3appr appr o

z z zz l r p z+ +
= + − − − +      [2-22] 

 
In figure 2.6 a plot is given of the actual z-position of the platform and the approximation of this 
position according to [2-22]. 
 
 

 
 
 
 
From the plot can be seen that the approximation for z-position makes an under-estimation. The 
error that is made is given in figure 2.7. 
 

 

Fig. 2.6 Approximation of the z-position according to [2-22]. 

Fig. 2.7 The error that is made with the approximation of the the z-
position according to [2-22]. 
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In the error plot can be seen that in the situation that p is zero, that means the platform is in the 
centre of his work area circle, the error is the largest and has a value of 26 [mm]. In the situation 
that the platform is at the edge of the safe work area (p = 200 [mm]), the error is 16 [mm]. That 
means that if the threshold value of the safety system is set to 250 [mm], the platform can move 
up to a height of 266 [mm] in the situation that p = 200 [mm]. Therefore the threshold value 
should be set at 234 [mm]. The platform cannot move above 250 [mm] then. 
 
 

2.2.2 Checking the power supply 
 
The Imotec manipulator is fed via an Uninterruptible Power Supply (UPS). This UPS is able to 
supply power to the manipulator for at least 10 seconds in case of a power break down from the 
supplier net. This should give time enough for bringing the end effector to a safe situation and 
shutting down the computing system. In case of a power down situation, the computing system 
is alarmed via a relay that checks whether the power supply from the net is present. This should 
trigger an appropriate control action. 

2.2.3 Checking the linear motors 
 
Linear motors based on permanent magnets are robust and reliable because no transmissions are 
needed to transform in a linear motion. However, the linear motor still can malfunction. For 
instance, the coils of the translators can heat up too much. Therefore the translators are equipped 
with thermal resistors to measure the temperature. This temperature can be checked by the 
computing system and in case of overheating measures can be taken. Another failure that can 
occur is that the linear motor gets stuck. This can be detected by a growing tracking error and 
measures can be taken. 
 

2.2.4 Checking the motor amplifiers 
 
The used amplifiers for the Imotec manipulator have safety checks built in. In case of faults, 
outputs are set high that can be noticed by the computing system and measures can be taken. In 
case of malfunctioning of the amplifiers the tracking error will become too large, this can be 
detected and measures can be taken. The amplifiers can check for under/over voltage of the 
power supply, short circuiting of motor currents and overheating of the amplifiers themselves.  
 
 

2.2.5 Checking the interface cards 
 
The Imotec manipulator uses three types of interface cards in the computer system: an encoder 
card, a digital input/output card and an analogue output card. These can all malfunction. 
Malfunctioning of the encoder card can be detected by the following.  
 

• The value of the encoder reading does not change at all, thus a growing tracking error.  
• The difference in values between two successive samples is much bigger then the 

translators possibly could move in the time difference.  
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It is difficult to check the analogue output card directly. A feasible method is to compare the 
error signal of the controller inside the software with a threshold. For instance, if the analogue 
card would malfunction it either send zero to the output or a fixed value different from zero. In 
both cases the translators will not move because there is no commutation performed. The 
tracking error will grow large and this can be detected. Performing the commutation inside the 
software and not in the amplifiers makes the manipulator inherent safe. 
 
The digital I/O card can be checked by using redundancy. This means using two input channels 
to read in one signal. For faultless operation the two inputs should be the same. But this method 
costs a lot of inputs and will not be used. The faulty operation of the digital I/O card will not 
cause life-threatening situations because emergency stops are not handled in software only, but 
are also applied directly to a safety relay. Therefore no checks will be applied to the digital I/O. 

2.2.6 Checking the computer system 
 
With the computer system there are two types of faults possible. First it is possible that there is a 
bug in the software. This can be a bug in the controller software but also a bug in the operating 
system itself. It is hard to detect this kind of software problems. A bug can result in the sitation 
that the tracking error will grow large during a motion or that the manipulator does not react on 
commands like start and stop.  
 
Secondly the computer can crash totally. This can be detected by means of a watchdog. This is a 
hardware component, which receives a signal from the computer system and checks if the 
computer is running. If the computer has crashed, this signal will not be detected and the 
watchdog will notice the malfunctioning of the computer system. Then proper action can be 
taken by the hardware, like activating the safety relay. In figure 2.8 the circuitry is given for the 
watchdog function. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
The working principle is as follows. A pulse train from the software drives a switch that 
activates timer relays K1 and K2. These are of the delayed fall-off type. As long as a pulse train 
is present with a period time that is smaller than the fall-of time, the contacts K1 and K2 will not 

PC 

+24V

GND

K1 K2 

K1 

K2 

Safety 
Relay 

Fig. 2.8 The watchdog circuitry for checking the computer system.  
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fall-off. When the computer system crashes, the pulse train will stop and after the delay time of 
the relay, the contact K1 or K2 will fall-off. This will cause the safety relay to take action. 

2.3 Faults by the environment 
 
For safe operation of the manipulator, the system should not interact with the environment 
physically. The Imotec manipulator is covered with a removable transparent security hedge 
made of lexan. Safety switches mounted on the hedge secure operation of the manipulator only 
when the hedge is mounted. This hedge ensures that no people or animals can enter the work 
area of the manipulator during operation. It also provides protection against the possibility that 
objects are thrown out of the work area by the manipulator.  
 
Another cause of possible faults can be wrong input of the user. The user can cause the 
manipulator to operate beyond its limits either by mistake or on purpose. The method discussed 
in 2.2.1 avoids operating the manipulator beyond the limitations even if the input is wrong. 
 

2.4 Applied checks and their responses 
 
In section 2.2 and 2.3 possible faults that can arise have been discussed. Table 2.1 summarizes 
the checks and their responses for the manipulator.  
 
 

Check: What Check: How Response 
Manipulator checks 

Motor temperature Thermal resistors to digital input Steering signals zero 
Amplifiers Judging tracking error Steering signals zero 
Encoder cards Judging tracking error Steering signals zero 
Computer system Watchdog circuitry (hardware) Power cut-off 

User input 
Exceeding work area Judging end-effector position Steering signals zero 
Actuator saturation Judging tracking error Steering signals zero 

Environment 
Entering work area Sensor on hedge (also hardware) Power cut-off 
Emergency Emergency stop button to digital input 

and to hardware 
Emergency stop and 

delayed power cut-off 
 
 
 
 
Most of the safety checks will respond with setting the steering signals to zero if a fault arises. 
The check of the computer system and entrance of the work area is handled in hardware. The 
power is cut off by the safety relay that falls off. The remaining checks will be solved in 
software. The next chapter describes the implementation of the safety checks and the total 
controller system.  

Table 2.1 Applied checks and their responses for the manipulator. 
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3 Implementation of the safe controller 
system 

 

3.1 Introduction 
 
Implementation of the controller with all the safeguards in software can be done conveniently by 
using a high level programming method. This section discusses the several implementation 
options that are considered. From these options a choice will be made for the final 
implementation of the safe controller system. 
 
The purpose of the implementation method is to create a complete working controller program 
with al the mentioned safety check mentioned in the previous chapter. The program must 
operate on the computing system of the manipulator, but it is not a requirement that the program 
must be developed on this system self. 
 
There are some additional requirements that the used implementation form has to meet: 
 
� The software used must be able to work on a PC under DOS, because that’s the 

operating system used in the manipulator. The preferred programming language is C++. 
The reason for this is that C++ is an object orientated and fast programming language. 
Also the Control Laboratory is experienced with C++. 

 
� Testing the created software by means of simulation before implementing it has large 

advantages. Therefore, it is highly preferable that the software environment has an easy 
way of doing simulations. 

 

3.2 Possible implementation methods of the safe controller system. 
 
The first and most obvious option is to write code in C++. This is not a high level method and 
will be laborious. Also, doing tests with the created code by simulations is not easy. A better 
method is the concept of agent based controller systems as proposed by [Van Breemen, 2000]. 
This method is more structured than a general programming language. It allows incremental 
design, which means that functionalities can be added later on without interfering with earlier 
implemented parts. This is very suitable for the safe controller design. 
An agent is an abstract entity that is able to solve a particular part of a total complex problem. 
Cooperation of multiple agents provides a solution to the total complex problem. For the present 
context, this is referred as a Multi Agent Controller system (MAC). In [Bajracharya, 2003] an 
integrated design tool for Multi Agent Controller systems (IDITMAC) is developed. This tool 
also makes it easy to test the created software by simulation. A Dynamically Linked Library 
(dll) file is created, which can be incorporated with 20-Sim modeling and simulation 
environment. This tool will be used for implementing the safe controller system of the Imotec 
manipulator. 
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3.3 The concept of MAC systems 
 
The term agent is widely used in the field of software engineering and artificial intelligence.  
In [Franklin, Graesser, 1997] an autonomous agent is defined as:  
 
“An autonomous agent is a system situated within and a part of an environment that senses that 
environment and acts on it, over time, in pursuit of its own agenda and so as to effect what it 
senses in the future.” 
 
Stated in other words, an agent can decide for it self whether it should undertake some actions. 
To undertake the action, the agent first has to become active.  
 
A MAC system consists of three basic agents: 
 
� Controller agent 
� Sensor agent 
� Actuator agent 

 
 
In figure 3.1 the symbols that are used for the basic agents are given. The next sections will give 
the explanation and describe the function of the various parts. 
 
 
 
 
 
 
 
 
 
 
 
 

3.3.1 Controller agents 
 
Two types of controller agents can be distinguished in the MAC system.  
 
� Elementary agent 
� Composite agent 

 
The elementary agent is the fundamental agent of a MAC system. It implements the local 
control solution for a part of the global control problem. The composite agent is a pool that 
consists of elementary and/or other composite agents. This allows hierarchical organization of 
the MAC system. The overall agent that contains all the other agents and is responsible for the 
total control system is called a Main agent. This is also a composite agent. 
 
 

Actuator
Agent 

Controller Agent 
 

Fig. 3.1 Symbols of the basic agents in a MAC system. 

Sensor 
Agent 



Implementation of the safe controller system 

17 

3.3.2 Sensor agents 
 
The sensor agent senses the environment and presents the data to the other agents. The data from 
the environment can be user input for controlling the system, measured values from the plant 
and disturbances. Because of the discrete implementation, the data will come from Encoder 
interface cards, A/D converters and digital inputs cards. 
 

3.3.3 Actuator agents 
 
Actuator agents present the processed control data to the environment. This control data can be 
signals for indicator lights, steering signals for the plant etc. The data will be presented to the 
environment by D/A converters and digital output cards. 
 
 

3.4 Coordination of agents 
 
Coorperation of agents is determined by a coordination mechanism. Agents that are cooperating 
are combined in a pool of agents (which is a composite agent). A coordination object that is also 
included in the pool does the coordination. In figure 3.2 the symbol of coordination objects is 
given. The coordination objects can be divided in three types: 
 
� Independent 
� Cooperative 
� Competitive  

 
Independent: coordination allows two or more agent to be active at the same time. The agent 
that are active at the same time have control over different outputs and do not interfere with each 
other. An independent type coordination is the Parallel coordination object, which is also the 
default one. 
  
Cooperative: coordination also allows two or more agent to be active at the same time. But now 
the agent can have control over the same output. Also the output of one agent can be the input of 
the other ones. Master-slave coordination object and Fuzzy addition coordination objects are 
cooperative type objects. 
 

o Master-slave coordination: If one agent is active the other one is also active. 
o Fuzzy addition coordination: The shared output is a function of the agent outputs that are 

active. 
  
 
Competitive: coordination allows only one agent to have control over a certain output. 
Coordination object of this type are Fixed priority coordination, Sequential coordination and 
Cyclic coordination. 
 

o Fixed priority coordination: From all the agents that wants to be active, the one with the 
highest priority is allowed to be active. 

o Sequential coordination: the agents of the pool are activated after each other. That means 
that when one agent stops being active, the next one in the pool becomes active.  
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o Cyclic coordination: this coordination is almost the same as Sequential except that if the 
last one in the order stops being active, the first one becomes active again.  

 
 
 
With these four coordination objects and the possibility for a hierarchical organization, complex 
controller problems can be solved in a partial manner. The MAC system for the Imotec 
manipulator will be described in the next section. 
 
 
 
 
 
 
 
 
 
 

3.5 MAC system for the manipulator 
 
An overview of the total controller agents for the Imotec manipulator will be given and their 
functions will be discussed. The entire controller is called the OverallController and has input 
connections to the buttons like START, STOP and EMERGENCY. Also the three encoder 
values z1, z2, z3 and the end switches of the motors are acquired by the inputs sensors. The 
outputs of the OverallController are the control voltages that drive the amplifiers and the digital 
outputs signals. A schematic overview of the total control system is given in figure 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The OverallController consists of a pool with a Startup, Alarm, GuardedEmergency, and a 
GuardedStandard agent. The coordination is fixed priority, see figure 3.4. In the following 
sections the function of these agents will be discussed. 
 
 
 
  
 

Fig. 3.2 Symbol of the coordination objects. 

Fig. 3.3 The Main controller agent for the manipulator. 

 
Outputs Inputs OverallController

Main Agent 
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3.5.1 Startup agent 
 
The first agent in priority order is the Startup agent. It becomes active when the ENABLE 
button is pressed. This button also activates the safety relay. When active, this agent performs 
the alignment and the homing of the manipulator. At the end of the homing procedure, the 
platform is positioned in the lowest centre point of the safe work area cylinder, see figure 3.5. 
This point is referred as the home location. The manipulator is now ready for operation and 
waiting to perform a specified motion. 
 
 

 
 
 
 
 
 
 

Fig. 3.4 Pool with agents of the OverallController system. 
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Alarm Inputs Outputs

voltage

voltage
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Standard 

voltage
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Fig. 3.5 Location of the home position. 
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3.5.2 Alarm agent 
 
The Alarm agent is an elementary agent and becomes active when the manipulator approaches 
situations that are not allowed or when malfunctioning of the manipulator occurs. It is activated 
on the following conditions: 
 

• The thermal resistors indicate that the linear motors heat up too much and digital input is 
set high. 

• The platform exceeds its safe work area; approximation done according to section 2.2.1. 
• Internally generated errors; e.g, unexpected startup position, aligning unsuccessful, 

encoder index pulse not found during homing procedure. 
 
Also the end switches of the linear motors activate the alarm agent, but theoretically this will not 
occur, because the platform has to exceed its safe work area to reach the end switches. Then the 
agent is already activated by the condition of exceeding the safe work area. When the alarm 
agent becomes active, all the steering signals are set to zero and the translators will fall down 
towards the end dampers. There is a possibility that the translators fall down from a high 
position on the end dampers. The end dampers have been constructed so to withstand the 
collision that occurs when the translators fall down from the highest position, but this should 
preferably be prevented. 
 
 

3.5.3 GuardedEmergency agent 
 
In case of an emergency, the EMERGENCY button should be pressed. This makes the 
GuardedEmergency agent become active. The EMERGENCY button also directly activates the 
safety relay. The safety relay switches of the power supply with a time delay of three seconds. 
Then the platform and the translators of the motors will fall down because of gravity. The 
function of the GuardedEmergency agent is to bring the manipulator in a safe situation within 
three seconds. This safe situation is at a position where the translators are about 5 [cm] above 
their end dampers and the speed is about zero. Then the translators fall down over a very short 
distance and this will not cause any damage. During the positioning of the translators, the 
tracking error is monitored by an ErrorGuard. When any of the three tracking errors grow out of 
the bounds, this agent sets all the steering signals to zero. 
 
 

3.5.4 GuardedStandard agent 
 
The GuardedStandard agent consists of a Standard agent and an ErrorGuard in master slave 
coordination. As before, the ErrorGuard agent monitors the tracking error and sets the steering 
signals to zero in case of exceeding the bounds. 
 
The Standard agent implements the control scheme shown in figure 3.6. This is done by 
combining a ModeSwitchController and a GravityCompensator (GC) via a fuzzy addition 
coordination. The gravity compensator currently simply generates a constant force to 
compensate for the non-variable parts of the gravity load. In the future this might be extended to 
a compensation scheme that depends on the actual manipulator position. The motivation for this 
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gravity compensator is that by using this scheme, mode switching will not induce transition 
responses due to the gravitational load. 
 
 

 
 
 
 
 

3.5.5 ModeSwitchController agent 
 
The ModeSwitchController agent is given in the figure 3.7. It consists of four agents in fixed 
priority coordination. The HoldZero agent is a controller agent with the lowest priority that 
keeps the platform at its home position. The Shutdown agent becomes active when the STOP 
button is pressed for four seconds. When active, it brings the translators of the linear motors to a 
position where they are just above their lower end stops and then it shuts down the program and 
switches off the power. When the START button is pressed, the Operate agent becomes active 
and the manipulator is then in operation mode. Two parallel working agents perform the 
operation mode, see figure 3.8. The PathFromFile agent reads the reference file samples into an 
array and presents every sample time a value to the PID agent. For settings of the PID controller 
see appendix D. The manipulator then performs the motion as specified in the sample file. In the 
case that the starting point of the reference path is not the same as the home point of the 
manipulator, the platform moves slowly to this starting point and then the motion is performed 
according to the reference path. This functionality is integrated in the PathFromFile agent. 
 

Fig. 3.6 Implementation of the Standard agent 
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Fig. 3.7 Pool with agents of the ModeSwitchController 
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When the STOP button is pressed, the Stop agent, which has the highest priority, becomes 
active and stops the manipulator by bringing it back to its home position. The Stop agent pool is 
given in figure 3.9. It consists of a Brake agent and a GoSteadyAll agent. The brake agent is a 
speed control agent that brings the speed of the manipulator to zero. When the STOP button is 
pressed, the momentary speed is determined. This measured speed is used to generate an inverse 
desired speed step to zero. A low-pass filter filters this desired speed step and the output is the 
reference for the speed controller. By using a filter, a smooth reference is generated without 
much computational effort.  
 
When the speed of the manipulator is almost zero, the Brake agent becomes inactive and the 
GoSteadyAll agent becomes active. This agent brings the manipulator to its home position after 
which the Stop agent becomes inactive. Like the Brake agent, also the GoSteadyAll agent works 
with a low-pass filter. Now the a desired position step is filtered to create a smooth reference 
path. After the home position is reached, the HoldZero agent automatically becomes active and 
keeps the manipulator at its home position. The manipulator is then ready and waiting to go in 
operation mode again. 
 
 
 
 
 
 
 
 
 
 
 
 

Parallel
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PathFromFile 

PID 
Inputs 
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voltage

Fig. 3.8 The Operate agent pool. 

reference sample 
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3.6 Total overview of the MAC system 
 
In figure 3.10 an overview is given of the total MAC system in hierarchical form. With the aid 
of IDITMAC created software can be compiled as an executable file to implement in the 
computing system of the manipulator. Also a dll file can be created for simulation in 20-Sim. It 
can be concluded that the agent based approach enables a convenient design process. The results 
of the simulation and the implementation will be discussed in chapter 5. The code for the total 
MAC system is given in appendix E.

Fixed
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GoSteadyAll 
Inputs 

Outputs

voltage

voltage

Fig. 3.9 The Stop agent pool. 
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 Fig. 3.10 Hierarchical overview of the total MAC system. 
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4 Path generation 
 

4.1 Introduction 
 
To perform motions with the manipulator, a motion profile input is needed by the PathFromFile 
agent. Motion profiles vary in shape and order. In one-dimensional manipulators, the shape of 
the motion profile is restricted to a straight line only, whereas in a multiple axes manipulator, 
much more complex shapes can be defined. Usually, profiles are defined as piecewise 
polynomials. The order of the profile gives the smoothness of the path. Higher order motion 
profiles are easier to follow by the end-effector, but require more complex computation and 
usually imply larger accelerations. This chapter will discuss path generation in general for 
multidimensional manipulators and a generally applicable tool for path generation will be 
developed.  
 

4.2 Tools for path specification 
 
For performing a motion, the controller of the actuator needs a sample of the path at each 
sample instant. This means that the path has to be presented to the controller as a list of 
reference points. It is a laborious and error-prone job to create this list manually, especially for 
complex trajectories. A tool on the market which allow us to give up begin points, end points, 
speed, acceleration etc. and creates the reference position samples from these parameters, is the 
Motion Assistant from National Instruments [www.ni.com/motion]. See figure 4.1 for a 
screendump of the tool. 
 

 
 
 
 

Fig. 4.1 Screendump of National Instruments path specification tool. 
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The Motion Assistant allows specifying motions in a graphical manner. By clicking and 
dragging with the mouse, we can manipulate the shape of the motion. Types of shapes that are 
available in the tool are straight-line movements and arc movements for up to 3 degrees of 
freedom. For the order of the profile we have the option between second order and third order 
profiles, which are also called respectively trapezoidal and s-curve profiles (these terms refer to 
the shape of the speed curve). A major drawback of the Motion Assistant is that it works only 
with hardware interfaces from National Instruments. This conflicts with the desire for a 
generally applicable path specification tool. Therefore the Motion Assistant will not be used 
further. Based on concepts as present in the Motion Assistant, the choice has been made to 
develop a path generation tool, which is hardware independent. This will be discussed in the 
next section. 
 
 

4.3 The Path Generator 
 
The generally applicable tool, see figure 4.2, uses an XML format to store motion information in 
an structural way. See Appendix C for an introduction to XML. The tool is written in Borland 
C++ Builder. An advantage of this is that the programming environment allows us to work 
directly with XML documents. This is done with the component TXMLDocument. It has 
methods like AddChildNode, GetChildNode, GetNodeName for manipulating nodes in an XML 
document directly.  
 

 
 Fig. 4.2 The generally applicable path generation tool. 
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The tool creates reference points in three coordinates. For the Imotec manipulator these 
coordinates are interpreted as positions x,y,z of the end-effector. The reference points are 
transformed according the inverse kinematics of the manipulator. For the Imotec manipulator 
this is done with [2-1]. At the moment no clicking and dragging options are available to set the 
shape of the motion. Also checking the created path with a plot must be done externally. For 
this, free plotting programs like GNUPLOT can be used. Motions are built up of segments. Each 
segment is a motion from standstill to standstill. Segments with initial and final speed not equal 
to zero are considered, but a problem with this is that discontinuities in speed and acceleration 
will arise at the joint between two segments. This can be overcome by connecting the segments 
with a spline movement or a Bezier curve. A major drawback of this is that considerable 
computational effort is needed for control over the shape of the Bezier curve. The manipulator 
could exceed its workspace if the Bezier curve is not well defined. So for the moment we only 
consider motion segments from standstill to standstill.  
 
Available motion shapes are straight line and arc shapes. The latter of course only in case of two 
or more dimensional manipulators. Profile types that can be chosen are trapezoidal and s-curve. 
It is desirable to have the opportunity to enter different values for the acceleration and the 
deceleration of a single segment. This option is included in the Path Generator. See table 4.1 for 
the functions of the Path Generator.  
 
When the desired segments have been added, the parameters can be changed by double clicking 
and editing the relevant items in the tree. The parameters and their meanings can be found in 
table 4.2. 
 
 
 
Button Function 

 Adds a straight motion segment with trapezoidal profile. 

 Adds an arc motion segment with trapezoidal profile. 

 Adds a straight motion segment with s-curve profile. 

 Adds an arc motion segment with s-curve profile. 

 Adds a wait in the motion 

 Deletes a wait or a motion segment. 

 Creates the file with reference samples 

 

 
 
 
 
 
 
 
 
 

Table 4.1 Functions of the Path Generator tool. 
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Icon Parameter 

 Starting point coordinate for the motion. 

 Distance coordinate of a motion segment. 

 The maximum speed of the motion segment. 

 The maximum acceleration of the motion segment. 

 The maximum deceleration of the motion segment. 

 The jerk of the motion segment with s-curve profile. 

 The radius of an arc movement. 

 Angle of an arc movement, more or less than π. 

 Auxiliary coordinate point for plane of arc movement. 
 
 
 
 
After the desired motion has been set up, the reference sample file can be built by clicking the 

 button. The user will be prompted to enter the sample frequency of the controller system. A 
sample file with extension .egl will be created. In the next sections, the algorithms for creating a 
sample file from the XML file will be discussed. An example of a saved XML path file is given 
in appendix C. 
 

4.4 Trapezoidal profile algorithm 
 
For creating a trapezoidal motion profile, the following parameters are needed. The maximum 
speed Vmax that is allowed to be reached, the acceleration A, deceleration D and the length of the 
stroke h. In figures 4.3 and 4.4 the position, speed and acceleration plots are given of the 
trapezoidal motion for two cases: when the maximum speed is reached within the given stroke h 
and when not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2 Parameters of the Path Generator tool. 
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Fig. 4.3 Trapezoidal motion profile when 
the maximum speed is reached. 

Fig. 4.4 Trapezoidal motion profile when 
the maximum speed cannot be reached. 
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In the algorithm, these two situations have to be distinguished. The algorithm is based on 
integrating the profile of the speed to a position; the speed profile is obtained by applying the 
given A and D. To take the right speed profile, a check must be performed to see if the 
maximum speed can be reached within the given stroke h. This is done by calculating the 
distance that would be travelled if the maximum speed would be just reached. If this distance, 
which is called h’, is larger than the given stroke h, the maximum speed will not be reached. 
With these tests, the following speed profiles are obtained and can be integrated, see figure 4.5. 

 
 
 
To perform the actual integration, the times Ta till Te need to be known. These can be calculated. 
First we take a look at the profile where the maximum speed is reached.  
 
We introduce the times T1 and T2 which are respectively the times to reach Vmax with the given 
acceleration A and to return from Vmax to zero speed with the given deceleration D. 
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with this the mentioned h’ becomes. 
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The times Ta, Tb and Tc can be calculated as: 
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For the situation where Vmax is not reached the following holds: 
 

Fig. 4.5 Speed profiles that are integrated to a position profile. 
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Now the value of Te can be calculated as 
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With relation [4-5] also Td is known and the integration can be performed. 
 
 

4.5 S-curve profile algorithm 
 
For the s-curve profile, an extra parameter is needed in addition to the trapezoidal profile 
parameters, namely the derivative of the acceleration/deceleration called jerk. For the 
acceleration A and deceleration D the same value for the jerk is taken. Only the maximum 
values of A and D can be different. Like the trapezoidal profile, also here there are several 
situations that have to be distinguished. Now not only a check for reaching the maximum speed 
has to be done, but also whether the maximum acceleration/deceleration can be reached within 
the given stroke h. In figure 4.6 a plot of the S-curve profile is given when the maximum speed, 
the maximum acceleration and the maximum deceleration are reached.  
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Fig. 4.6 S-curve motion profile with both maximum 
speed and acceleration reached. 
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The basis acceleration profile is given in figure 4.7. This can be integrated two times to obtain 
the desired position profile. Before the integration can be performed, the times Ta till Tg have to 
be known. If the maximum speed is not reached, Td equals zero. If the maximum acceleration or 
deceleration is not reached, respectively Tb and Tf equal zero.  
 
 

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Ta Tb Tc TgTeTd Tf

 
 
 
 
 
 
First we distinguish whether or not the maximum speed is reached. The times Ta, Tb and Tc are 
calculated to reach the maximum speed with the given maximum acceleration and jerk. Then the 
times Te, Tf and Tg can be calculated to return from this maximum speed with the given 
maximum deceleration and jerk. With the calculated times, the total covered distance h’ can be 
calculated. If this distance is smaller than the stroke h, it is certain that the maximum speed is 
reached and Td is larger than zero. The time Td that the maximum speed holds on can be 
calculated as: 
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Then all the times are known and the integration can be performed. In the situation where the 
distance h’ is larger than h, it is certain that the maximum speed will not be reached. Then the 
acceleration profile will have one of the four following shapes (figures 4.8). 
 
 
 
 
 

Fig. 4.7 Basis acceleration profile that is 
integrated to position. 
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Profile 4 is solved easily because of symmetry. Profile 1 can be solved in the following way. 
First the distance h’’ that is covered when the maximum acceleration is just reached is 
calculated. This distance h’’ is smaller then the stroke h. A formula can be derived for the 
distance (h - h’’) that is needed to equal stroke h as a function of ∆Tb. The order of ∆Tb is two in 
this function. That means that it can be solved with the ABC formula. Profile 2 and 3 are solved 
on the same manner as with profile 1, also here a formula can be derived for the distance that is 
needed to equal h as a function of ∆Te. But here the order of ∆Te is three in this function. This 
means that there is no analytical general solution. The function can be solved numerically by 
iteration. The formula’s for (h - h’’) are not given because of their large size and non-
transparancy. 
 

4.6 Straight line movement 
 
The straight line movement is a relatively simple movement. The trapezoidal or S-curve profile 
that is generated has to be assigned to the straight line movement. If the manipulator is a single 
axis manipulator then the transformation is not needed. For multiple axis manipulators like the 
Imotec manipulator the transformation goes as follows. First the straight line movement has to 
be decomposed in the distances along the dimensions, like ∆x for the distance covered along the 
x-axis etc. Then the transformation becomes: 
 
 

2 2 2h x y z= ∆ + ∆ + ∆           [4-9] 
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Fig. 4.8 Possible acceleration profiles when the maximum speed is not reached. 
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With pos the instantaneous position value of the trapezoidal or S-curve profile.  
 
 

4.7 Arc movement 
 
The arc movement is more complex to generate but also more difficult to enter/define by the 
user. In xy-manipulators the parameters needed are a beginpoint, endpoint and the radius of the 
arc. However this is not sufficient to define the arc motion unambiguously. Figure 4.9 shows the 
possible arc motions with only the parameters above given. 
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From the figure can be seen that there are four possible arc movements: two arcs that make a 
smaller angle than π  and two arcs that make a larger angle than π. Defining that the arc motion 
is clockwise from beginpoint to endpoint for the smaller angle arcs and counter clockwise for 
the large angle arcs, makes the method more unambiguous. This means that in figure 4.9 only 
arc 3 and 4 are possible. To complete the method also a choice between arc 3 and arc 4 has to be 
made. This is done by entering an extra parameter, which defines whether the angle of the arc is 
smaller or larger than π.  

Fig. 4.9 Possible arc movements when only a beginpoint, endpoint and radius 
are entered in a two dimensional manipulator. 
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In three dimensional manipulators the arc is not restricted to the xy-plane. An extra parameter is 
needed to define the plane of the arc. There are various ways of defining this plane. For 
instance, an option is to first define the arc in the xy-plane as with two-dimensional 
manipulators. Then by giving up two angles the arc can be placed in the desired plane. This is 
what is done in the Motion Assistant from National Instruments, See figure 4.10. 
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A major drawback of this method is that the endpoint of the arc motion cannot be entered 
directly by the user. This is highly desirable when defining a motion. A better method which 
allows entrance of the endpoint is the following method. A third auxiliary point is entered which 
defines the plane together with the begin and endpoint. The auxiliary point is given up with 
respect to the beginpoint. This method is used in the developed Path Generator tool.  
 
 

4.8 Assigning the sample reference points to the arc movement 
 
To create the actual arc movement, the trapezoidal or S-curve profile has to be assigned to the 
motions along the axes of the manipulator. In this section the procedure for a three dimensional 
one like the Imotec manipulator will be discussed. A two dimensional transformation can be 
derived easily from the three dimensional one. In figure 4.11, some vectors are defined that are 
needed for the conversion. An arc movement can be described as the rotation of vector e in the 
plane of the arc. This vector rotates from the beginpoint Bp to endpoint Ep, with a speed conform 
the motion profile that is used (trapezoidal or S-curve). Ap is the auxiliary point of the arc 
motion that defines the plane of the arc movement. 
 

Fig. 4.10 A method for defining arc motions in three dimensional manipulators, 
first the arc is defined in the xy-plane and then rotated and tilted to the desired 
plane. 
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Ap is entered as a point with respect to Bp and therefore equals vector b. The centre point m of 
the arc has to be determined to create the rotation vector e. The point m can be found on the 
following way. First the vector a is found as: 
 
 

a
2

p pE B−
=            [4-11] 

 
The normal on the plane of the arc motion, vector c, is found by: 
 

ac b= ×            [4-12] 
 
We define a new vector g, which is aligned with d, but has not the same length as d. 
 

ag c= ×            [4-13] 
 
Then the vector d can be found as 
 

221 ad R g
g

= ⋅ − ⋅           [4-14] 

 
With R, the known radius of the arc motion. And finally for the point m: 
 

apm B d= + +           [4-15] 
 

Fig. 4.11 Vectors that are defined to transform the arc parameters in to the 
sample file. 
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With the centre point m of the rotation and the motion profile known, the actual rotation of 
vector e can be performed to obtain the sample points along the arc. The rotation vector e is 
found by: 
 
 pe B m= −            [4-16] 
 
The rotation is done by placing the plane of the arc in the xy-plane, rotating about the z-axis over 
a variable angle β and then transforming back. The transformation matrix to place the plane of 
the arc in the xy-plane is called Rc and the rotation matrix in the xy-plane is called R(β).  
 
The actual sample values s of the arc motion is found by: 
 

-1
( )     c cs m R R R eβ= +          [4-17] 

 
Rc follows from Bp, Ep and Ap. We need to find the variable angle β for rotating e about the z 
axis with the rotation matrix R(β). 
 
The overall rotation angle α that vector e makes, is found by the inner product of the vectors e 
and d. 
 

12cos d e
d e

α −  − ⋅
=   

 
          [4-18] 

 
 
With the known radius R, the angle α is related to the motion stroke h by: 
 

                   
(2 )         

R angle
h

R angle
α π
π α π

<
=  − ≥

        [4-19] 

 
 
Take pos to be the instantaneous values of the trapezoidal or S-curve profile, running from zero 
to h. The values of pos can be transformed back in the variable angle β by: 
 
 

         

           

pos angle
R

pos angle
R

π
β

π

− <= 
 ≥


         [4-20] 

 
As a result, β will go from zero to α [rad] with a trapezoidal or S-curve motion profile and the 
rotation can be done. 
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5 Simulations and experiments 
 

5.1 Introduction 
 
In this chapter the developed path generator and safe controller system will be tested. Both 
simulations and actual experiments are carried out. First a demonstrator path is made with the 
Path Generator tool. This path will be used to perform motions with the manipulator. The 
response on emergency and alarm situations will be tested. Also the response on a too large 
tracking error which is monitored by the ErrorGuard agent is verified. Becasuse of time 
constraints, the experiments with LFFC have not been carried out. 
 

5.2 Design of demonstrator path 
 
First a path is made that will operate the manipulator in its safe work area. Therefore an alarm 
situation is not expected to occur and the manipulator should operate normally. The specified 
motion is a spiral with a radius of 0.15 [m] that curls from zero height to 0.25 [m] and then 
returns to the home position in a straight line. The motion starts in the home position, see figure 
5.1 for a plot of the motion. The maximum speed is 0.2 [m/s] and the maximum acceleration 0.5 
[m/s2]. Later on, this path will be modified such that it exceeds the safe work area and alarm 
situations should arise. 
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Fig. 5.1 Plot of the path created with the Path Generator tool that 
operates the manipulator in its safe work area. 
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5.3 The 20-Sim model of the manipulator. 
 
A 20-Sim model of the manipulator is available that can be used for verifying the developed 
software in simulation (De Vries, De Kruif). An overview of the top level of this model is given 
in figure 5.2. The plant model consists of the following parts: 
 
� 3 linear motors that operate in z-direction. These submodels primarily consist of a 

modulated source of force and a translator mass; 
� 3 arms with ball joints on both ends. The arms implement the kinematics of the robot. In 

order to allow for the use of explicit integration methods, they also contain spring- and 
damping effects. I.e., although these effects could also be motivated physically, they 
have been included for simulation purposes and the corresponding parameter values are 
chosen from this perspective; 

� a platform (plateau). This plateau has mass and can move with three degrees of freedom 
(x, y, z). 

 
For evaluation purposes, the model has been extended with a multi-agent controller and with 
signal sources that emulate the digital hardware inputs. The input buttons are implemented as 
pulse generators. The controller is a sub model that contains the dll created with the IDITMAC 
program. The plant model has not been validated and hence is not competent for tuning the PID 
settings of the controller. But this is not a problem; the goal of the used model is to verify the 
functionality of the created software and not to optimize the controller for small tracking error.  
 

 
 
 
 
 
 
 
 
 

Fig. 5.2 20-Sim model of the Imotec manipulator. 
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5.4 Verifying the standard mode in simulation 
 
The first simulation that is done is to test the normal operation mode of the manipulator. That 
means that the manipulator is waiting for the START button to be pressed. When the START 
button is pressed, the manipulator has to perform the movement as specified in figure 5.1. When 
the STOP button is pressed before the end of the specified motion, the manipulator must brake 
and return to its home position. First the results are given of the case where the STOP button is 
not pressed and the motion is performed till the end, see figure 5.3. 
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Fig. 5.3a Simulation of the motion given in figure 5.1 for z1, z2 
and z3; the START button is pressed at t=1 sec. The STOP 
button is not pressed and the motion is performed till the end. 

Fig. 5.3b 3D simulation of the motion given in figure 5.1 for x, y 
and z, the START button is pressed at t=1 sec. The STOP button 
is not pressed and the motion is performed till the end.
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From the plots can be seen that the manipulator behaves as expected. In figure 5.3a it can be 
seen that the platform is held in its home position until the START button is pressed at t = 1 sec. 
Then the motion is performed. Notice that z2 becomes negative first. The fact that the translators 
are not at their lowest point when the platform is in its home position explains this. z1, z2 and z3 
can vary maximally between –0.08 [m] and 0.45 [m]. Now the test will be continued with the 
case that the STOP button is pressed before the end of the specified motion. These results are 
given in figure 5.4. 
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Fig. 5.4a Simulation of the motion given in figure 5.1 for z1, z2 and z3, the 
START button is pressed at t=1 sec. The STOP button is pressed at t=13 sec. 
The motion is stopped and the manipulator moves to its home position. 

Fig. 5.4b 3D simulation of the motion given in figure 5.1 for x, y and z, the 
START button is pressed at t=1 sec. The STOP button is pressed at t=13 sec. 



Simulation and experiments 

41 

Again from the plots of figure 5.4 can be seen that the manipulator behaves as expected. When 
the STOP button is pressed at t = 13 sec. the manipulator brakes and moves towards its home 
position, then it is ready to perform the motion again when the START button is pressed. Fig 
5.4b shows the motion of the platform. Due to the kinematics, the shape of the motion after the 
stop is not straight, but rather arbitrary. One can recognize three phases: 
 
� a: all the translators move towards their zero point. 
� b: translator 2 has reached its zero point and translator 1 and 3 are still moving. 
� c: only translator 1 is still moving towards its zero point. 

 
The followed path of the platform is arbitrary because the speeding down and positioning of the 
translators towards their home positions is done independent from each other. 
 
 

5.5 Verifying the ErrorGuard 
 
In case of too large tracking errors, all the steering signals should be set to zero by the 
ErrorGuard agent. This simulation is given in figure 5.5. At t = 4.4 sec., the value of encoder 3 
is set to zero to emulate an error. This results in a large tracking error and therefore the 
ErrorGuard agent should become active. 
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In the plots can be seen that. We note that when the encoder value 3 is set to zero, the alarm 
agent (which has a higher priority) also can become active. The alarm agent uses the encoder 
reading to approximate the position of the platform. A bad encoder reading can result in 
determining that the platform is outside its safe work area. However, the response of the Alarm 
agent is the same as the response of the ErrorGuard agent (setting all the steering signals to zero) 
and therefore this has no consequences. 
 
 
 

Fig. 5.5 Simulation of the ErrorGuard agent. An encoder error is emulated at t 
= 4.4 sec. The steering signals are set to zero then and the translator fall down 
towards the end dampers 
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5.6 Verifying the emergency situation in simulation 
 
In emergency situations the EMERGENCY button is pressed. The manipulator should react on 
this by bringing the platform to a safe position first and then switching off the power. In 
simulation, switching off the power is not taken in account. The simulation of the emergency 
situation is given in the plots of figure 5.6. 
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Fig. 5.6a Simulation of an emergency situation during the motion, the 
EMERGENCY button is pressed at t=3 sec. The translators move down to a 
safe position just above the lower end stops and wait until the power is cut off.  

Fig. 5.6b 3D simulation of an emergency situation during the motion, the 
EMERGENCY button is pressed at t=3 sec. 
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From the plot in figure 5.6a, we see that the emergency mode works properly. At t = 3 sec. the 
EMERGENCY button is pressed. The speed of the translators is reduced and then they move to 
the lower safe position where z1 = z2 = z3 = -0.1. Figure 5.6b shows that the platform moves 
towards the safe position. The followed path to get there looks a bit strange. The reason for this 
is the same as with the stop mode: the translators are slowed down and positioned independent 
from each other. 
 
 

5.7 Verifying the alarm mode in simulation 
 
To verify the alarm mode of the controller, first the reference path is modified such that the 
manipulator will exceed its safe work area. At the moment that this happens, the alarm mode 
should become active and the steering signals must be set to zero. The reference path that is 
used causes the platform to move to the point {0.3, 0.1, 0.0}. This point lies outside the safe 
work area and therefore the alarm mode becomes active. The results can be seen in the plots of 
figure 5.7. 
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Fig. 5.7a Simulation of an alarm situation during the motion; the platform is forced to 
operate beyond its limits. At the moment that the platform reaches its limit, the steering 
signals are set to zero and the translators move down towards the end stops. 
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From the simulation plots of figure 5.7, we see that the alarm mode works correctly for 
exceeding the safe work area. The steering signals are set to zero when the platform reaches its 
limits. The translators then move down due to gravity. In the plot is seen that the translators 
continue falling down. In the real system the end dampers stop them, but in the model this has 
not been incorporated. 
 

5.8 Experimental results 
 
The designed controller system has largely been implemented on the computing system of the 
manipulator. This means that the hierarchy of fig 3.10 is for a large part also realized in the 
actual real time control system. Compared to the simulated control system, the following 
differences are present: 
 
� the StartupController, which was not included in simulations, has been implemented as a 

sequentially coordinated composite agent consisting of: a CheckStartAgent, an 
AlignAgent, a HomingAgent and a GoHomeAgent. 

� the Alarm and GuardEmergency agents have not yet been included 
� the Stop agent and the Shutdown agent have not yet been added. 

 
The following controller settings are used which gave satisfactory results. 
 
K = 89290 [N/m] 
Td = 0.01264 [s] 
Ti = 0.2 [s] 
 

Fig. 5.7b 3D simulation of an alarm situation during the motion. When the 
platform reaches its limits, the alarm mode becomes active and switches off the 
power. The translators then move to the end stops. 
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The motion according to fig 5.1 is performed with the manipulator. For safety reasons the path 
is sligthly modfied to lower accelarations and speeds. Therefore the motion time is larger. The 
results of performing the motion with the actual manipulator are given in the figure 5.8 till 5.10.  
 
 

 
 
 
 
 
 

Fig. 5.8 Result of motor 1 with actual  manipulator motion. 

Fig. 5.9 Result of motor 2 with actual  manipulator motion. 
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From the plots can be seen that the tracking error has peaks of somewhat larger than 250 [µm]. 
These peaks coincides with the moments where a velocity reversal occurs with the translators. 
This large peak can be explained by the phenomena of stiction. If we disregard the peaks, the 
tracking error is about 100 [µm]. This is conform expectations. 
 

Fig. 5.10 Result of motor 3 with actual  manipulator motion. 
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6 Conclusions and recommendations 
 

6.1 Conclusions 
 
The aim of the assignment was to design and realize a safe controller system for a parallel 
manipulator including the setpoint generation. The safe controller is designed and implemented 
according to the agent-based approach as introduced by [Van Breemen, 2000]. For doing this 
the tool IDITMAC is used. The tool provides a convenient design process and the designed 
software can easily be incorporated with the modelling and simulation environment 20-Sim for 
verification. The designed safe controller has been tested in simulation and the correct operation 
of the various modes (Standard, Alarm and Emergency) is verified. The obtained structure of the 
safe controller system is also applicable for other manipulators; only the conditions for agent 
activity will vary. 
 
A safety analysis of the manipulator is done and has resulted in the following crucial points: 
 

• Judging tracking error 
• Judging platform position for not exceeding safe work area. 
• Hardware safety circuitry 

 
Furthermore, performing the commutation algorithm inside the computer system and not in the 
amplifiers makes the manipulator inherent safe. 
 
The designed controller is largely implemented in the computer system of the Imotec 
manipulator. A slow, large stroke movement is performed which resulted in a maximum 
tracking error of 250 [µm]. This peak occurs at moments of velocity reversal. Therefore,  the 
error peak can be explained as a result of stiction.  
 
Because of time constraints, the experiments with Learning Feed Forward Control have not been 
carried out, but it is expected that adding the LFFC to the feedback loop will give a large 
improvement considering the stiction. 
 
A general path specification tool is developed for defining reference paths for xyz-manipulators. 
It allows giving up a motion in segments. Supported motion profiles are trapezoidal and S-
curve. For the moment, the shape of the reference paths can be straight line and arc movements. 
The defined path is stored in XML format for which a schema is available. The tool also creates 
a file with reference sample points as setpoint for the feedback controller.  
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6.2 Recommendations 
 
In alarm situations of the safe controller, the steering signals are set to zero. This causes the 
translators to fall down on the end dampers (This also happens in power cut-off situations). It 
would be better to brake dynamically in those situations. The coils of the translators can be short 
circuited by means of a brake relay. This would result in a slow movement of the translator 
towards the end dampers. 
 
The approximation of the platform position has a too large variation; the error that is made 
depends too much on the angle φ in cylindrical coordinates. A better approximation should be 
made that also takes φ in account. 
 
The Function Approximator has to be added to the feedback controller and experiments must be 
done . 
 
The path generator tool developed in this thesis provides basic facilities for path specification of 
manipulators. The following improvements can be made to the tool: 
 
� Motion segments are currently from standstill to standstill. It is desirable that segments 

can start and end with a speed unequal to zero. This allows smooth continuous 
movements. 

 
� Currently, only arc and straight line movements are supported. This should be extended 

with elliptical and spiral movements. 
 
� Copy, cut and paste functions should be added to the tool for easy editing of path 

specifications. 
 
� Checking the specified path by means of a 3d plot should occur within the tool itself. 
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Appendix A 
 
Working principle and drive of linear motor. 
 
A.1 Working principle of linear motor 
 
The brushless permanent-magnet motor configuration consists of a base plate (stator), covered 
with permanent magnets, and a sliding part (translator) that holds the electric coils and their iron 
cores, see figure A.1. By applying a three-phase current to the coils, a sequence of attracting and 
repelling forces between the poles and the permanent magnets will be generated. An incremental 
linear encoder measures the position of the translator. 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To increase the efficiency of the motor, iron cores are placed in the coils. These iron cores have 
a magnetic interaction with the permanent magnets on the base plate. This interaction, regardless 
whether there is a current in the coils or not, results in a force that tries to move the translator 
into stable detent positions. This phenomenon is known as cogging. Because of the spatial 
distribution of the magnets with a period of 12 [mm] a stable detent position is also found every 
12 [mm]. 
 
 
 
 
A.2 Drive of linear motor 
 
To obtain the right sequence of the attracting and repelling forces for the movement 
commutation is needed. There are several commutation methods, like trapezoidal and sine wave. 
The best performance is achieved with sine wave commutation, which is also the most 
computing effort costing. The currents trough the individual coils depends on the needed force 
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Figure A.1 Working principle of the linear motor. The indicated 
lines are the flux lines of the permanent magnets. 
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for the movement and the relative position of the coil with respect to the magnets. In figure A.2 
the principle of commutation is explained. In the figure only one coil is given. Because of the 
three-phase configuration of the coils the current through the other coils are 120° shifted. The 
colour of the coil gives the amount of current and the N or S symbol gives the pole, which 
depends on the sign of the current. Darker colours represent larger currents. The direction of the 
movement can be changed by applying a phase shift of 180°to the current. Because of the sine 
function this is the same as changing the sign of the reference current. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The commutation can be written out in formulas: 
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With Pos as the absolute position of the translators, which starts with zero exactly when coil 
number 1 is above a North pole magnet on the base plate. There are amplifiers on the market, 
which can determine the relative position of the coils with respect to the magnets by measuring 
the magnetic field. This is done by Hall sensors in the translator. The Tecnotion linear motor 
that is used for the manipulator doesn’t have any Hall sensors. This means that before the 
commutation can start, a procedure has to be executed to bring the translator exactly with coil 
number one above a North pole. Which North pole doesn’t matter, as long it is a North pole on 
the base plate. This procedure is called aligning. A feasible aligning method that can be 
performed with the used amplifiers is the so called “ wake and shake” method. This goes as 
follows. Coil number one is fed with 0.5 Inom and coil number two with –0.25 Inom. In a three-
phase system the three currents add up to a sum of zero, therefore a current of –0.25 Inom is also 
fed to coil number three by the amplifier. Coil number one has become a “strong “ South pole 
and coil number two and three “weak” North poles. This causes a force that drives the translator 
exactly above the nearest North pole with coil number one. By holding on the currents for about 
half a second, the translator is aligned. With this position known the encoder can be reset and 
the commutation can start. The maximum displacement during aligning is 12 [mm]. 
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Figure A.2 Principle of commutation. The darkness of the coil 
represents the amount of current through it. 
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Appendix B 
Hardware overview of the manipulator 
 
B.1 The electronic components 
 
In figure B.1 a block schematic overview of the most important hardware components is given. 
The components will be treated in more detail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B.2 The computer system 
 
The computer system of the manipulator consists of two identical industrial pc’s (IPC’s) in one 
housing. The computers are linked via a TCP/IP Link. System I, a Windows NT machine, will 
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Fig. B.1 Overview of the electronic components. 
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be used for running the Graphical User Interface (GUI) and system II for performing “realtime” 
control of the manipulator. System II is running under DOS. This is certainly not a realtime 
operating system but has proven to be a stable platform. The DOS machine contains three PC 
cards, A DAC plus some digital input, a digital I/O and an encoder card. 
 
B.3 The amplifier 
 
The used amplifiers are three TBL250/10 series in a 19” rack from MTS Automation. The 
amplifiers are relatively simple without any commutation logics or intelligence. This means that 
commutation to drive the motors must be performed in software. As an input reference for the 
three-phase output currents, only Iu and Iv are needed. The third reference current is calculated 
internally because the sum of the currents must be zero in a three-phase system. This saves out 
one DAC channel per motor. The amplifiers have a current-voltage ratio of 2. A maximum of ± 
10 V reference results in a max output current of ± 20 A. The linear motors have a force-current 
ratio of 39. The force-voltage ratio is therefore 78. 
 
 
B.4 The DAC card 
 
The DAC card is an 8 channel 14-bit analog output board from ICP DAS. Only 6 of the 8 
channels are used. It has a output modes of ±10 Volt and ±5 Volt. For the manipulator the ±5 
Volt mode is used. This results in an maximum output current for the amplifier of ±10 Ampere, 
which is feasible for the motors.  
 
 
 
B.5 The digital I/O card 
 
The digital I/O card is from the manufacturer Isolation. It has 16 optically isolated inputs and 16 
relay outputs. The input voltage is 5-24 volt AC or DC. The I/O card is used to enable the 
amplifiers, read in the operations button like ENABLE, START and STOP. 
 
 
B.6 The Encoder card and the encoders. 
 
The PCL-833 encoder card from Advantech reads in the 3 linear encoders of the motors. The 
encoders are from the manufacturer Numerik Jena and have a grating period of 20 [µm]. After 
the quadrature and the 5X interpolation factor this results in a resolution of 1.0 [µm]. 
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Appendix C 
 
An introduction to XML 
 
C.1 The XML format 
 
Extensible Markup Language (XML), defined by the World Wide Web Consortium (W3C), is a 
universal language for describing and exchanging data on the web. It is emerging as a new way 
to store and communicate data. Even though its primary application is as the future of the World 
Wide Web, it can be used in a variety of situations to structure digital data. XML is a powerful 
language that enables a user to store and communicate semi-structure data. XML, like HTML, is 
based on tags, and represents documents as trees of element. It also has two sorts of element: 
empty and non-empty elements. Moreover, the XML specification defines precise rules that 
make document parsing simple. XML specification defines two types of XML document: valid 
documents and well-formed documents. In what follows we describe some of the conditions that 
well-formed documents must fulfil. 
 
The document instance must conform to the grammar of XML documents. In particular, some 
markup constructs are only allowed in specific places. 
 
No attribute may appear more than once in the same start tag. 
 
Attributes must be declared without ambiguity, notably attribute values must be enclosed 
between two similar quotation marks. 
 
Non-empty element tags must be properly nested: any non-empty element must be closed by its 
end tag before its ancestors. 
 
Empty element tags must contain a slash ‘/’ just before the end bracket. 
 
 
 
 
This is how well formed XML looks like: 
 
<?xml version=”1.0” ?> 
<!--comment a peace of well formed xml code      --> 
<myMessage> 
 <message>Welcome to XML!</message> 
</myMessage> 
 
 
The same code viewed with Internet Explorer: 
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C.2 XML Schemas 
 
Schemas are to define an XML document’s structure, but an XML document is not required to 
have a corresponding schema. However, schemas are often recommended to ensure document 
conformity. Schemas specify an XML document’s structure and are themselves also defined 
using XML. 
 
An XML document that conforms to a schema document is valid and a document that dose not 
conform is invalid. Now, there are two major types of schema models, one created by Microsoft 
and the other by W3C. In this thesis, we use the W3C XML Schemas to describe the structure 
and element content of our XML documents for storing path information. 
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C.3 Structure of the XML path file 
 
The XML path file that is stored and converted to a reference sample file has a specified 
structure. It could be modified directly in a text editor, but it is recommended to do this only 
within the Path Generator tool. The path file is validated against his schema “move.xsd”. There 
is no limit to the number of motion segments and waits that can be added to a motion. Beneath 
an example of a stored reference path is given in xml format. 
 
<?xml version="1.0"?> 
<!-- Created with XML Path Generator Imotec bv --> 
<!-- Created on 5-3-2003 at 21:02:29 --> 
<move xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="move.xsd"> 
   <description>Demonstrator path for Imotec manipulator</description> 
   <starting_point dim="3"> 
      <coord>0.0</coord> 
      <coord>0.0</coord> 
      <coord>0.0</coord> 
   </starting_point> 
   <composite_path> 
      <path> 
         <segment> 
            <motion> 
               <scurve> 
                  <max_v>.5</max_v> 
                  <max_a>.2</max_a> 
                  <max_d>.2</max_d> 
                  <max_jerk>100</max_jerk> 
               </scurve> 
            </motion> 
            <shape> 
               <straight> 
                  <distance dim="3"> 
                     <coord>.15</coord> 
                     <coord>0</coord> 
                     <coord>0</coord> 
                  </distance> 
               </straight> 
            </shape> 
         </segment> 
      </path> 
      <wait>0.75</wait> 
      <path> 
         <segment> 
            <motion> 
               <trapezoid> 
                  <max_v>.5</max_v> 
                  <max_a>.2</max_a> 
                  <max_d>.2</max_d> 
               </trapezoid> 
            </motion> 
            <shape> 
               <arc> 
                  <distance dim="3"> 
                     <coord>-.15</coord> 
                     <coord>.15</coord> 
                     <coord>.05</coord> 
                  </distance> 
                  <angle>less_than_pi</angle> 
                  <radius>.15</radius> 
                  <aux_point dim="3"> 
                     <coord>-.15</coord> 
                     <coord>0</coord> 
                     <coord>.025</coord> 
                  </aux_point> 
               </arc> 
            </shape> 
         </segment> 
      </path> 
   </composite_path> 
</move> 
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Appendix D 
 
Controller settings 
 
D.1 Identifying the plant model 
 
For obtaining a plant model to come to a controller design, the manipulator is divided in to three 
identical parts. Solving the design for one part gives a solution to the total control problem of 
the manipulator. Such a part that is used as a model consists of one motor attached to the plateau 
by the arms. This results in a fourth order plant model. It is expected that the dominant stiffness 
of this model is located in the arms and joints. In figure D.1 an iconic diagram of the model is 
given. 
 
 
 

F m2 m1

c

 
 
 
 
 
This type of model is called a Flexible Mechanism. The following parameters are given: 
 
Mass of the end-effector with load: m1 = 1…6 [kg] 
 
Mass of the motor:   m2 = 2 [kg] 
 
Total mass    m = 8 [kg] 
 
The value of the spring constant c for the arms and joints are not known because of the complex 
construction. The position measurement is done on the motor. This leads to a concept AR 
transfer function. In the next section a PID feedback compensator will be designed for the model 
with unknown parameter c. 
 
 
 

Fig. D.1 Iconic diagram of the model that is used for controller design. 
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D.2 PID compensator design 
 
For designing the PID compensator, the procedure as described in [Coelingh, 2000] is followed. 
 
The steps for this procedure are: 
 

1. Determine the desired bandwidth ωb. 
 
2. Determine the total mass to be displaced. 

 
 
3. Determine the amount of phase lead by choosing β, a practical value for β is 0.1 

which gives a phase lead of 55º. 
 
4. Determine the value of the derivative time constant Td according to: 

1
2d

b

T
ω β

=          [D-1] 

 
5. Determine the proportional gain K to obtain the desired bandwidth ωb by: 

2 2
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       [D-2] 

 
6. Determine the integral time constant Ti in order to obtain a desired gain at low 

frequencies. Avoid interfering with the derivative and proportional action. 
 
7. Determine the high frequency roll-of time constant Th to suppress the disturbance of 

noise by: 
h dT Tβ<          [D-3] 

 
 
The desired bandwidth ωb cannot be specified well due to uncertainty in the spring constant of 
the arms. Therefore, a number of controller settings are calculated for different bandwidths. 
These can be implemented in the actual controller, starting with the lower bandwidth parameters 
and improving to higher bandwidths without oscillating. In table D.1 the parameters are given 
for the different bandwidths. 
 
ωb [rad/s] K    [N/m] Td   [s] Ti   [s] Th   [s] 

50 14286 0.0316 0.4 18.6 10-5 

100 57143 0.0158 0.2 9.5 10-5 

150 128570 0.0105 0.2 6.3 10-5 

200 228570 0.0079 0.1 4.7 10-5 

250 357140 0.0063 0.1 3.8 10-5 

 
Table D.1 Parameters of the controller settings for different desired bandwidths. 
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Appendix E 
 
Total MAC system XML source code 
 
E.1 The Main agent XML code 
 
<?xml version="1.0"?> 
<mac xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="MacSchema.xsd"> 
 <name>TriPod2</name> 
 <interface> 
  <ports> 
   <input> 
    <type>TwenteSensor</type> 
    <name>encoder1</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>encoder2</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>encoder3</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>startbutton</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>emergencybutton</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>s1up</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>s1down</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>s2up</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>s2down</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>s3up</name> 
   </input> 
   <input> 
    <type>TwenteSensor</type> 
    <name>s3down</name> 
   </input> 
   <output> 
    <type>TwenteActuator</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>TwenteActuator</type> 
    <name>voltage2</name> 
   </output> 
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   <output> 
    <type>TwenteActuator</type> 
    <name>voltage3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>OverallController</type> 
     <name>overallController</name> 
    </cagent> 
   </cagency> 
   <connections> 
    <connection> 
     <from>stopbutton.output</from> 
     <to>overallController.stopbutton</to> 
    </connection> 
    <connection> 
     <from>startbutton.output</from> 
     <to>overallController.startbutton</to> 
    </connection> 
    <connection> 
     <from>emergencybutton.output</from> 
     <to>overallController.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>encoder3.output</from> 
     <to>overallController.Z3</to> 
    </connection> 
    <connection> 
     <from>s1up.output</from> 
     <to>overallController.s1up</to> 
    </connection> 
    <connection> 
     <from>s1down.output</from> 
     <to>overallController.s1down</to> 
    </connection> 
    <connection> 
     <from>s2up.output</from> 
     <to>overallController.s2up</to> 
    </connection> 
    <connection> 
     <from>s2down.output</from> 
     <to>overallController.s2down</to> 
    </connection> 
    <connection> 
     <from>s3up.output</from> 
     <to>overallController.s3up</to> 
    </connection> 
    <connection> 
     <from>s3down.output</from> 
     <to>overallController.s3down</to> 
    </connection> 
    <connection> 
     <from>overallController.voltage1</from> 
     <to>voltage1.input</to> 
    </connection> 
    <connection> 
     <from>overallController.voltage2</from> 
     <to>voltage2.input</to> 
    </connection> 
    <connection> 
     <from>overallController.voltage3</from> 
     <to>voltage3.input</to> 
    </connection> 
    <connection> 
     <from>encoder1.output</from> 
     <to>overallController.Z1</to> 
    </connection> 
    <connection> 
     <from>encoder2.output</from> 
     <to>overallController.Z2</to> 
    </connection> 
   </connections> 
  </composite> 
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 </implementation> 
</mac> 

 
 
 
E.2 The OverallAgent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>OverallController</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s1up</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s1down</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s2up</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s2down</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s3up</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s3down</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>emergencybutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>startbutton</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
  </ports> 
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 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
<!-- Insert Startup agent here --> 
    <cagent> 
     <type>Alarm</type> 
     <name>alarm</name> 
    </cagent> 
    <cagent> 
     <type>GuardedEmergency</type> 
     <name>emergency</name> 
    </cagent> 
    <cagent> 
     <type>GuardedStandard</type> 
     <name>standard</name> 
    </cagent> 
   </cagency> 
   <coordination> 
    <class>FixedPriorityCoordinator</class> 
    <name>fixedPriorityMO1</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>Z1</from> 
     <to>alarm.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>alarm.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>alarm.Z3</to> 
    </connection> 
    <connection> 
     <from>alarm.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>alarm.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>alarm.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>emergencybutton</from> 
     <to>emergency.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>s1up</from> 
     <to>alarm.s1up</to> 
    </connection> 
    <connection> 
     <from>s1down</from> 
     <to>alarm.s1down</to> 
    </connection> 
    <connection> 
     <from>s2up</from> 
     <to>alarm.s2up</to> 
    </connection> 
    <connection> 
     <from>s2down</from> 
     <to>alarm.s2down</to> 
    </connection> 
    <connection> 
     <from>s3up</from> 
     <to>alarm.s3up</to> 
    </connection> 
    <connection> 
     <from>s3down</from> 
     <to>alarm.s3down</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
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     <to>emergency.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>emergency.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>emergency.Z3</to> 
    </connection> 
    <connection> 
     <from>emergency.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>emergency.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>emergency.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>standard.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>standard.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>standard.Z3</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>standard.stopbutton</to> 
    </connection> 
    <connection> 
     <from>startbutton</from> 
     <to>standard.startbutton</to> 
    </connection> 
    <connection> 
     <from>standard.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>standard.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>standard.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
 
E.3 The Alarm agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Alarm</name> 
 <include><![CDATA[<cmath>]]></include> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
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   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s1up</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s1down</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s2up</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s2down</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s3up</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>s3down</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>Tm</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Td</name> 
    <defaultvalue>2.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Ho</name> 
    <defaultvalue>0.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Hm</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>samplingtime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
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    <state> 
     <type>boolean</type> 
     <name>goAktiv</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>zcalc</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>radc</name> 
    </state> 
   </states> 
    <start><![CDATA[  
{ 
 zcalc = 0.0; 
 radc = 0.0; 
 goAktiv = false; 
} 
   ]]></start> 
    <initialize><![CDATA[  
{ 
 voltage1 = 0.0; 
 voltage2 = 0.0; 
 voltage3 = 0.0; 
} 
   ]]></initialize> 
   <activation><![CDATA[  
{ 
  
 if (goAktiv) 
  return 1.0; 
 else 
  return 0.0; 
} 
   ]]></activation> 
   <calculate><![CDATA[  
{ 
 voltage1 = 0.0; 
 voltage2 = 0.0; 
 voltage3 = 0.0; 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 
 radc =  0.82 * sqrt(Z1*Z1 - Z1*Z2 - Z1*Z3 + Z2*Z2 - Z2*Z3 + Z3*Z3); 
 
 zcalc = (Z1 + Z2 + Z3)/3.0 + 1.355*( 0.202681 - radc*radc) - 0.301201 
 if(radc>0.17 || zcalc>0.234) 
  goAktiv = true; 
 
} 
   ]]></update> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
 
E.4 The GuardedEmergency agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GuardedEmergency</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>emergencybutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
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   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Emergency</type> 
     <name>em1</name> 
    </cagent> 
    <cagent> 
     <type>ErrorGuard</type> 
     <name>eg</name> 
    </cagent> 
   </cagency> 
   <coordination> 
    <class>MasterSlaveCoordinator</class> 
    <name>c1</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>emergencybutton</from> 
     <to>em1.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>em1.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>em1.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>em1.Z3</to> 
    </connection> 
    <connection> 
     <from>em1.voltage1</from> 
     <to>eg.voltageIn1</to> 
    </connection> 
    <connection> 
     <from>em1.voltage2</from> 
     <to>eg.voltageIn2</to> 
    </connection> 
    <connection> 
     <from>em1.voltage3</from> 
     <to>eg.voltageIn3</to> 
    </connection> 
    <connection> 
     <from>em1.error1</from> 
     <to>eg.error1</to> 
    </connection> 
    <connection> 
     <from>em1.error2</from> 
     <to>eg.error2</to> 
    </connection> 
    <connection> 
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     <from>em1.error3</from> 
     <to>eg.error3</to> 
    </connection> 
    <connection> 
     <from>eg.voltageOut1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>eg.voltageOut2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>eg.voltageOut3</from> 
     <to>voltage3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
 
E.5 The ErrorGuard agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>ErrorGuard</name> 
 <include><![CDATA[<cmath>]]></include> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>voltageIn1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>voltageIn2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>voltageIn3</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>error1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>error2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>error3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltageOut1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltageOut2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltageOut3</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>bound</name> 
    <defaultvalue>0.005</defaultvalue> 
   </parameterdef> 
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  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>real</type> 
     <name>factor</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
 factor = 1.0; 
} 
   ]]></start> 
   <activation><![CDATA[  
{ 
  return 1.0; 
} 
  ]]></activation> 
   <calculate><![CDATA[ { 
 if (error1>=bound) 
  factor = 0.0; 
 if (error2>=bound) 
  factor = 0.0; 
 if (error3>=bound) 
  factor = 0.0; 
 
 voltageOut1 = factor * voltageIn1; 
 voltageOut2 = factor * voltageIn2; 
 voltageOut3 = factor * voltageIn3; 
} 
   ]]></calculate> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
 
E.6 The Emergency agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Emergency</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>emergencybutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
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   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Brake</type> 
     <name>brakeEmerg</name> 
     <parameters> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
      <parameter> 
       <name>K</name> 
       <value>5.0</value> 
      </parameter> 
      <parameter> 
       <name>BW</name> 
       <value>5.0</value> 
      </parameter> 
     </parameters> 
    </cagent> 
    <cagent> 
     <type>GoSteadyAllEmerg</type> 
     <name>goSteadyAllEmerg</name> 
    </cagent> 
   </cagency> 
     <coordination> 
    <class>FixedPriorityCoordinator</class> 
    <name>fixedPriorityMO6</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>emergencybutton</from> 
     <to>brakeEmerg.activationinput</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>brakeEmerg.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>brakeEmerg.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>brakeEmerg.Z3</to> 
    </connection> 
    <connection> 
     <from>brakeEmerg.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>brakeEmerg.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>brakeEmerg.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>brakeEmerg.error1</from> 
     <to>error1</to> 
    </connection> 
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    <connection> 
     <from>brakeEmerg.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>brakeEmerg.error3</from> 
     <to>error3</to> 
    </connection> 
    <connection> 
     <from>emergencybutton</from> 
     <to>goSteadyAllEmerg.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>goSteadyAllEmerg.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goSteadyAllEmerg.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>goSteadyAllEmerg.Z3</to> 
    </connection> 
    <connection> 
     <from>goSteadyAllEmerg.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>goSteadyAllEmerg.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>goSteadyAllEmerg.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>goSteadyAllEmerg.error1</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>goSteadyAllEmerg.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>goSteadyAllEmerg.error3</from> 
     <to>error3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 

 
 
E.7 The Brake agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Brake</name> 
 <include><![CDATA[<cmath>]]></include>  
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>activationinput</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
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    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>sampletime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>K</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>BW</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>boolean</type> 
     <name>isAktive</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>previousZ1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>previousZ2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>previousZ3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speed1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speed2</name> 
    </state> 
    <state> 
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     <type>real</type> 
     <name>speed3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>refspeed1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>refspeed2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>refspeed3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speedstep1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speedstep2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speedstep3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>BWrad</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y3</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
 BWrad = BW*2*3.1415926536; 
 isAktive = false; 
} 
   ]]></start> 
   <initialize><![CDATA[  
{ 
 speedstep1 = (Z1 - previousZ1) / sampletime; 
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 speedstep2 = (Z2 - previousZ2) / sampletime;  
 speedstep3 = (Z3 - previousZ3) / sampletime; 
 
 y1 = 0; 
 y2 = 0; 
 y3 = 0; 
  
 voltage1 = 0.0; 
 voltage2 = 0.0; 
 voltage3 = 0.0; 
} 
   ]]></initialize> 
   <finalize><![CDATA[  
{ 
 speed1 = 0.0; 
 speed2 = 0.0; 
 speed3 = 0.0; 
} 
   ]]></finalize> 
   <activation><![CDATA[  
{ 
 if (isAktive) 
  return 1.0; 
 else 
  return 0.0; 
} 
   ]]></activation> 
   <calculate><![CDATA[  
{ 
 s2y1 = BWrad*BWrad*(speedstep1 - y1) - 1.4142*BWrad*s1y1; 
 s1y1 = s1y1 + s2y1*sampletime; 
 y1 = y1 + s1y1*sampletime;          
 
 s2y2 = BWrad*BWrad*(speedstep2 - y2) - 1.4142*BWrad*s1y2; 
 s1y2 = s1y2 + s2y2*sampletime; 
 y2 = y2 + s1y2*sampletime;          
 
 s2y3 = BWrad*BWrad*(speedstep3 - y3) - 1.4142*BWrad*s1y3; 
 s1y3 = s1y3 + s2y3*sampletime; 
 y3 = y3 + s1y3*sampletime;          
 
 
 refspeed1 = speedstep1 - y1; 
 refspeed2 = speedstep2 - y2; 
 refspeed3 = speedstep3 - y3; 
 
 speed1 = (Z1 - previousZ1) / sampletime; 
 speed2 = (Z2 - previousZ2) / sampletime;  
 speed3 = (Z3 - previousZ3) / sampletime; 
 
 error1 = refspeed1 - speed1; 
 error2 = refspeed2 - speed2; 
 error3 = refspeed3 - speed3; 
 
 voltage1 = error1 * K; 
 voltage2 = error2 * K; 
 voltage3 = error3 * K; 
 
 if (fabs(speed1)< 0.02 && fabs(speed2)<0.02 && fabs(speed2)<0.02) 
  isAktive = false; 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 if (activationinput == 1.0) 
  isAktive = true; 
 
 speed1 = (Z1 - previousZ1) / sampletime; 
 speed2 = (Z2 - previousZ2) / sampletime;  
 speed3 = (Z3 - previousZ3) / sampletime; 
 
 previousZ1 = Z1; 
 previousZ2 = Z2; 
 previousZ3 = Z3; 
} 
   ]]></update> 
  </elementary> 
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 </implementation> 
</cagentclass> 
 
 
E.8 The GosteadyAllEmerg agent code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GoSteadyAllEmerg</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>emergencybutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>GoSteadyEmerg</type> 
     <name>goSteady1Emerg</name> 
    </cagent> 
    <cagent> 
     <type>GoSteadyEmerg</type> 
     <name>goSteady2Emerg</name> 
    </cagent> 
    <cagent> 
     <type>GoSteadyEmerg</type> 
     <name>goSteady3Emerg</name> 
    </cagent> 
   </cagency> 
   <connections> 
    <connection> 
     <from>emergencybutton</from> 
     <to>goSteady1Emerg.emergencybutton</to> 
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    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>goSteady1Emerg.Z</to> 
    </connection> 
    <connection> 
     <from>emergencybutton</from> 
     <to>goSteady2Emerg.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goSteady2Emerg.Z</to> 
    </connection> 
    <connection> 
     <from>emergencybutton</from> 
     <to>goSteady3Emerg.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>goSteady3Emerg.Z</to> 
    </connection> 
    <connection> 
     <from>goSteady1Emerg.voltage</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>goSteady2Emerg.voltage</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>goSteady3Emerg.voltage</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>goSteady1Emerg.error</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>goSteady2Emerg.error</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>goSteady3Emerg.error</from> 
     <to>error3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
E.9 The GosteadyEmerg agent code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GoSteadyEmerg</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>emergencybutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error</name> 
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   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Accelerate</type> 
     <name>accelerate</name> 
     <parameters> 
      <parameter> 
       <name>endspeed</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>endposZ</name> 
       <value>-0.1</value> 
      </parameter> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
      <parameter> 
       <name>K</name> 
       <value>5.0</value> 
      </parameter> 
      <parameter> 
       <name>BW</name> 
       <value>3.0</value> 
      </parameter> 
     </parameters> 
    </cagent> 
    <cagent> 
     <type>GoPosEmerg</type> 
     <name>goPosEmerg</name> 
     <parameters> 
      <parameter> 
       <name>K</name> 
       <value>80</value> 
      </parameter> 
      <parameter> 
       <name>Td</name> 
       <value>0.02</value> 
      </parameter> 
      <parameter> 
       <name>N</name> 
       <value>10.0</value> 
      </parameter> 
      <parameter> 
       <name>Ti</name> 
       <value>1000</value> 
      </parameter> 
      <parameter> 
       <name>minimum</name> 
       <value>-5</value> 
      </parameter> 
      <parameter> 
       <name>maximum</name> 
       <value>5</value> 
      </parameter> 
      <parameter> 
       <name>MV_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>output_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
      <parameter> 
       <name>BW</name> 
       <value>3.0</value> 
      </parameter> 
      <parameter> 
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       <name>EndposZ</name> 
       <value>-0.1</value> 
      </parameter> 
     </parameters> 
    </cagent> 
   </cagency> 
     <coordination> 
    <class>FixedPriorityCoordinator</class> 
    <name>fixedPriorityMO4</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>emergencybutton</from> 
     <to>accelerate.activationinput</to> 
    </connection> 
    <connection> 
     <from>Z</from> 
     <to>accelerate.Z</to> 
    </connection> 
    <connection> 
     <from>accelerate.voltage</from> 
     <to>voltage</to> 
    </connection> 
    <connection> 
     <from>accelerate.error</from> 
     <to>error</to> 
    </connection> 
    <connection> 
     <from>emergencybutton</from> 
     <to>goPosEmerg.emergencybutton</to> 
    </connection> 
    <connection> 
     <from>Z</from> 
     <to>goPosEmerg.Z</to> 
    </connection> 
    <connection> 
     <from>goPosEmerg.voltage</from> 
     <to>voltage</to> 
    </connection> 
    <connection> 
     <from>goPosEmerg.error</from> 
     <to>error</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
 
E.10 The Accelerate agent 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Accelerate</name> 
 <include><![CDATA[<cmath>]]></include> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>activationinput</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error</name> 
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   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>endspeed</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>endposZ</name> 
    <defaultvalue>0.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>sampletime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>K</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>BW</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>boolean</type> 
     <name>isAktive</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>previousZ</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>currspeed</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speed</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>refspeed</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>speedstep</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>BWrad</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
 BWrad = BW*2*3.1415926536; 
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 isAktive = false; 
} 
   ]]></start> 
   <initialize><![CDATA[  
{ 
 currspeed = (Z - previousZ) / sampletime; 
 
 speedstep = currspeed - endspeed; 
 
 if (endposZ<Z) 
  speedstep = -speedstep;  
 
 y = 0; 
  
 voltage = 0.0; 
} 
   ]]></initialize> 
   <finalize><![CDATA[  
{ 
 speed = 0.0; 
} 
   ]]></finalize> 
   <activation><![CDATA[  
{ 
 if (isAktive) 
  return 1.0; 
 else 
  return 0.0; 
} 
   ]]></activation> 
   <calculate><![CDATA[  
{ 
 s2y = BWrad*BWrad*(speedstep - y) - 1.4142*BWrad*s1y; 
 s1y = s1y + s2y*sampletime; 
 y = y + s1y*sampletime;          
 
 refspeed = currspeed - y; 
 
 speed = (Z - previousZ) / sampletime; 
 
 error = refspeed - speed; 
 voltage = error * K; 
 
 if (fabs(Z-endposZ)< 0.02) 
  isAktive = false; 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 if (activationinput == 1.0) 
  isAktive = true; 
 
 speed = (Z - previousZ) / sampletime; 
 
 previousZ = Z; 
} 
   ]]></update> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
 

 
E.11 The GoPosEmerg agent 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GoPosEmerg</name> 
 <include><![CDATA[<cmath>]]></include>  
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>emergencybutton</name> 
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   </input> 
   <input> 
    <type>real</type> 
    <name>Z</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>K</name> 
    <defaultvalue>20</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Td</name> 
    <defaultvalue>0.02</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>N</name> 
    <defaultvalue>10</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Ti</name> 
    <defaultvalue>1000</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>minimum</name> 
    <defaultvalue>-5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>maximum</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>MV_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>output_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>sampletime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>BW</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>EndposZ</name> 
    <defaultvalue>0.0</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>real</type> 
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     <name>scaled_MV</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>factor</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uD</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError</name> 
    </state> 
    <state> 
     <type>boolean</type> 
     <name>isAktive</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>refpos</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>currpos</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>posstep</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>BWrad</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
 BWrad = BW*2*3.1415926536; 
 isAktive = false; 
} 
   ]]></start> 
   <initialize><![CDATA[  
{ 
 currpos = Z; 
 
 posstep = EndposZ - currpos; 
 
 prevError=0.0; 
 
 y = 0; 
  
 voltage = 0.0; 
} 
   ]]></initialize> 
   <finalize><![CDATA[  
{ 
} 
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   ]]></finalize> 
   <activation><![CDATA[  
{ 
 if (isAktive) 
  return 1.0; 
 else 
  return 0.0; 
} 
   ]]></activation> 
   <calculate><![CDATA[  
{ 
 s2y = BWrad*BWrad*(posstep - y) - 1.4142*BWrad*s1y; 
 s1y = s1y + s2y*sampletime; 
 y = y + s1y*sampletime;          
 
 
 refpos = currpos + y; 
 
 scaled_MV = MV_scale * Z; 
 error = refpos - scaled_MV; 
 
 factor = 1 / ( sampletime + Td / N ); 
 
 uD = factor * (sampletime * K *error + Td  * K * (error - prevError)  + Td * uD / N );  
 
 uI = uI + sampletime * uD / Ti ; 
 
 ideal_output = uI + uD;  
 
 voltage = output_scale * ideal_output; 
 
 if (voltage<minimum) 
  voltage=minimum; 
 if (voltage>maximum) 
  voltage=maximum; 
 
 prevError=error; 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 if (emergencybutton == 1.0) 
  isAktive = true; 
} 
   ]]></update> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
 
E.12 The GuardedStandard agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GuardedStandard</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>startbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
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   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Standard</type> 
     <name>standard1</name> 
    </cagent> 
    <cagent> 
     <type>ErrorGuard</type> 
     <name>eg</name> 
    </cagent> 
   </cagency> 
   <coordination> 
    <class>MasterSlaveCoordinator</class> 
    <name>c1</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>startbutton</from> 
     <to>standard1.startbutton</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>standard1.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>standard1.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>standard1.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>standard1.Z3</to> 
    </connection> 
    <connection> 
     <from>standard1.voltage1</from> 
     <to>eg.voltageIn1</to> 
    </connection> 
    <connection> 
     <from>standard1.voltage2</from> 
     <to>eg.voltageIn2</to> 
    </connection> 
    <connection> 
     <from>standard1.voltage3</from> 
     <to>eg.voltageIn3</to> 
    </connection> 
    <connection> 
     <from>standard1.error1</from> 
     <to>eg.error1</to> 
    </connection> 
    <connection> 
     <from>standard1.error2</from> 
     <to>eg.error2</to> 
    </connection> 
    <connection> 
     <from>standard1.error3</from> 
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     <to>eg.error3</to> 
    </connection> 
    <connection> 
     <from>eg.voltageOut1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>eg.voltageOut2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>eg.voltageOut3</from> 
     <to>voltage3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
 
E.13 The Standard agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Standard</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>startbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
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 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>ModeSwitchController</type> 
     <name>msc</name> 
    </cagent> 
    <cagent> 
     <type>GravityCompensator</type> 
     <name>gc</name> 
    </cagent> 
   </cagency> 
   <coordination> 
    <class>FuzzyAdditionCoordinator</class> 
    <name>c1</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>startbutton</from> 
     <to>msc.startbutton</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>msc.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>msc.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>msc.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>msc.Z3</to> 
    </connection> 
    <connection> 
     <from>msc.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>msc.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>msc.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>msc.error1</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>msc.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>msc.error3</from> 
     <to>error3</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>gc.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>gc.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>gc.Z3</to> 
    </connection> 
    <connection> 
     <from>gc.voltage1</from> 
     <to>voltage1</to> 
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    </connection> 
    <connection> 
     <from>gc.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>gc.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
 
E.14 The GravityCompensator agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GravityCompensator</name> 
 <include><![CDATA[<cmath>]]></include> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>Vg</name> 
    <defaultvalue>0.25</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <activation><![CDATA[  
{ 
  //here we could return a factor that depends on Z1, Z2 and Z3 
  //for the time being, just take 1.0 
  return 1.0; 
} 
  ]]></activation> 
   <calculate><![CDATA[ { 
 voltage1 = Vg; 
 voltage2 = Vg; 
 voltage3 = Vg; 
} 
   ]]></calculate> 
  </elementary> 
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 </implementation> 
</cagentclass> 
 
 
E.15 The ModeSwitchController agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>ModeSwitchController</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>startbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Stop</type> 
     <name>stop</name> 
    </cagent> 
    <cagent> 
     <type>Operate</type> 
     <name>operate</name> 
    </cagent> 
<!-- Insert Shutdown agent here --> 
    <cagent> 
     <type>HoldZeroPID</type> 
     <name>holdZeroPID</name> 
     <parameters> 
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      <parameter> 
       <name>K</name> 
       <value>80</value> 
      </parameter> 
      <parameter> 
       <name>Td</name> 
       <value>0.02</value> 
      </parameter> 
      <parameter> 
       <name>N</name> 
       <value>10.0</value> 
      </parameter> 
      <parameter> 
       <name>Ti</name> 
       <value>500</value> 
      </parameter> 
      <parameter> 
       <name>minimum</name> 
       <value>-5</value> 
      </parameter> 
      <parameter> 
       <name>maximum</name> 
       <value>5</value> 
      </parameter> 
      <parameter> 
       <name>MV_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>output_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
     </parameters> 
    </cagent> 
   </cagency> 
   <coordination> 
    <class>FixedPriorityCoordinator</class> 
    <name>fixedPriorityMO2</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>stopbutton</from> 
     <to>stop.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>stop.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>stop.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>stop.Z3</to> 
    </connection> 
    <connection> 
     <from>startbutton</from> 
     <to>operate.startbutton</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>operate.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>operate.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>operate.Z2</to> 
    </connection> 
    <connection> 
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     <from>Z3</from> 
     <to>operate.Z3</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>holdZeroPID.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>holdZeroPID.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>holdZeroPID.Z3</to> 
    </connection> 
    <connection> 
     <from>stop.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>stop.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>stop.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>operate.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>operate.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>operate.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>holdZeroPID.output1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>holdZeroPID.output2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>holdZeroPID.output3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>stop.error1</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>stop.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>stop.error3</from> 
     <to>error3</to> 
    </connection> 
    <connection> 
     <from>operate.error1</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>operate.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>operate.error3</from> 
     <to>error3</to> 
    </connection> 
    <connection> 
     <from>holdZeroPID.error1</from> 
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     <to>error1</to> 
    </connection> 
    <connection> 
     <from>holdZeroPID.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>holdZeroPID.error3</from> 
     <to>error3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
E.16 The Stop agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Stop</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Brake</type> 
     <name>brake</name> 
     <parameters> 
      <parameter> 



Appendix E 

91 

       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
      <parameter> 
       <name>K</name> 
       <value>5.0</value> 
      </parameter> 
      <parameter> 
       <name>BW</name> 
       <value>5.0</value> 
      </parameter> 
     </parameters> 
    </cagent> 
    <cagent> 
     <type>GoSteadyAll</type> 
     <name>goSteadyAll</name> 
    </cagent> 
   </cagency> 
     <coordination> 
    <class>FixedPriorityCoordinator</class> 
    <name>fixedPriorityMO3</name> 
   </coordination> 
   <connections> 
    <connection> 
     <from>stopbutton</from> 
     <to>brake.activationinput</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>brake.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>brake.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>brake.Z3</to> 
    </connection> 
    <connection> 
     <from>brake.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>brake.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>brake.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>brake.error1</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>brake.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>brake.error3</from> 
     <to>error3</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>goSteadyAll.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>goSteadyAll.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goSteadyAll.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
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     <to>goSteadyAll.Z3</to> 
    </connection> 
    <connection> 
     <from>goSteadyAll.voltage1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>goSteadyAll.voltage2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>goSteadyAll.voltage3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>goSteadyAll.error1</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>goSteadyAll.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>goSteadyAll.error3</from> 
     <to>error3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
E.17 The GoSteadyAll agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GoSteadyAll</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
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    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>GoSteady</type> 
     <name>goSteady1</name> 
    </cagent> 
    <cagent> 
     <type>GoSteady</type> 
     <name>goSteady2</name> 
    </cagent> 
    <cagent> 
     <type>GoSteady</type> 
     <name>goSteady3</name> 
    </cagent> 
   </cagency> 
   <connections> 
    <connection> 
     <from>stopbutton</from> 
     <to>goSteady1.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>goSteady1.Z</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goSteady1.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>goSteady1.Z3</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>goSteady2.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goSteady2.Z</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>goSteady2.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>goSteady2.Z3</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>goSteady3.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>goSteady3.Z</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>goSteady3.Z3</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goSteady3.Z2</to> 
    </connection> 
    <connection> 
     <from>goSteady1.voltage</from> 
     <to>voltage1</to> 
    </connection> 
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    <connection> 
     <from>goSteady2.voltage</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>goSteady3.voltage</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>goSteady1.error</from> 
     <to>error1</to> 
    </connection> 
    <connection> 
     <from>goSteady2.error</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>goSteady3.error</from> 
     <to>error3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
E.18 The GoSteady agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GoSteady</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>Accelerate</type> 
     <name>accelerate</name> 
     <parameters> 
      <parameter> 
       <name>endspeed</name> 
       <value>0.7</value> 
      </parameter> 
      <parameter> 
       <name>endposZ</name> 
       <value>0.0</value> 
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      </parameter> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
      <parameter> 
       <name>K</name> 
       <value>5.0</value> 
      </parameter> 
      <parameter> 
       <name>BW</name> 
       <value>3.0</value> 
      </parameter> 
     </parameters> 
    </cagent> 
    <cagent> 
     <type>GoPos</type> 
     <name>goPos</name> 
     <parameters> 
      <parameter> 
       <name>K</name> 
       <value>80</value> 
      </parameter> 
      <parameter> 
       <name>Td</name> 
       <value>0.02</value> 
      </parameter> 
      <parameter> 
       <name>N</name> 
       <value>10.0</value> 
      </parameter> 
      <parameter> 
       <name>Ti</name> 
       <value>1000</value> 
      </parameter> 
      <parameter> 
       <name>minimum</name> 
       <value>-5</value> 
      </parameter> 
      <parameter> 
       <name>maximum</name> 
       <value>5</value> 
      </parameter> 
      <parameter> 
       <name>MV_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>output_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
      </parameter> 
      <parameter> 
       <name>BW</name> 
       <value>3.0</value> 
      </parameter> 
      <parameter> 
       <name>EndposZ</name> 
       <value>0.0</value> 
      </parameter> 
      <parameter> 
       <name>EndposZ2</name> 
       <value>0.0</value> 
      </parameter> 
      <parameter> 
       <name>EndposZ3</name> 
       <value>0.0</value> 
      </parameter> 
     </parameters> 
    </cagent> 
   </cagency> 
     <coordination> 
    <class>FixedPriorityCoordinator</class> 
    <name>fixedPriorityMO4</name> 
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   </coordination> 
   <connections> 
    <connection> 
     <from>stopbutton</from> 
     <to>accelerate.activationinput</to> 
    </connection> 
    <connection> 
     <from>Z</from> 
     <to>accelerate.Z</to> 
    </connection> 
    <connection> 
     <from>accelerate.voltage</from> 
     <to>voltage</to> 
    </connection> 
    <connection> 
     <from>accelerate.error</from> 
     <to>error</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>goPos.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z</from> 
     <to>goPos.Z</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>goPos.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>goPos.Z3</to> 
    </connection> 
    <connection> 
     <from>goPos.voltage</from> 
     <to>voltage</to> 
    </connection> 
    <connection> 
     <from>goPos.error</from> 
     <to>error</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
E.19 The GoPos agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>GoPos</name> 
 <include><![CDATA[<cmath>]]></include>  
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
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    <type>real</type> 
    <name>voltage</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>K</name> 
    <defaultvalue>20</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Td</name> 
    <defaultvalue>0.02</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>N</name> 
    <defaultvalue>10</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Ti</name> 
    <defaultvalue>1000</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>minimum</name> 
    <defaultvalue>-5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>maximum</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>MV_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>output_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>sampletime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>BW</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>EndposZ</name> 
    <defaultvalue>0.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>EndposZ2</name> 
    <defaultvalue>0.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>EndposZ3</name> 
    <defaultvalue>0.0</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
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  <elementary> 
   <states> 
    <state> 
     <type>real</type> 
     <name>scaled_MV</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>factor</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uD</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError</name> 
    </state> 
    <state> 
     <type>boolean</type> 
     <name>isAktive</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>refpos</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>currpos</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>posstep</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>BWrad</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
 BWrad = BW*2*3.1415926536; 
 isAktive = false; 
} 
   ]]></start> 
   <initialize><![CDATA[  
{ 
 currpos = Z; 
 
 posstep = EndposZ - currpos; 
 
 prevError=0.0; 
 
 y = 0; 
  
 voltage = 0.0; 
} 
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   ]]></initialize> 
   <finalize><![CDATA[  
{ 
} 
   ]]></finalize> 
   <activation><![CDATA[  
{ 
 if (isAktive) 
  return 1.0; 
 else 
  return 0.0; 
} 
   ]]></activation> 
   <calculate><![CDATA[  
{ 
 s2y = BWrad*BWrad*(posstep - y) - 1.4142*BWrad*s1y; 
 s1y = s1y + s2y*sampletime; 
 y = y + s1y*sampletime;          
 
 
 refpos = currpos + y; 
 
 scaled_MV = MV_scale * Z; 
 error = refpos - scaled_MV; 
 
 factor = 1 / ( sampletime + Td / N ); 
 
 uD = factor * (sampletime * K *error + Td  * K * (error - prevError)  + Td * uD / N );  
 
 uI = uI + sampletime * uD / Ti ; 
 
 ideal_output = uI + uD;  
 
 voltage = output_scale * ideal_output; 
 
 if (voltage<minimum) 
  voltage=minimum; 
 if (voltage>maximum) 
  voltage=maximum; 
 
 prevError=error; 
 if ((fabs(Z - EndposZ)< 0.001)  && (fabs(Z2 - EndposZ2)<0.001) && (fabs(Z3 - 
EndposZ3)<0.001)) 
  isAktive = false; 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 if (stopbutton == 1.0) 
  isAktive = true; 
} 
   ]]></update> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
E.20 The Operate agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>Operate</name> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>startbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
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   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>voltage1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>voltage3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <composite> 
   <cagency> 
    <cagent> 
     <type>PID</type> 
     <name>pidController</name> 
     <parameters> 
      <parameter> 
       <name>K</name> 
       <value>50000</value> 
      </parameter> 
      <parameter> 
       <name>Td</name> 
       <value>0.008</value> 
      </parameter> 
      <parameter> 
       <name>N</name> 
       <value>10.0</value> 
      </parameter> 
      <parameter> 
       <name>Ti</name> 
       <value>0.25</value> 
      </parameter> 
      <parameter> 
       <name>minimum</name> 
       <value>-5</value> 
      </parameter> 
      <parameter> 
       <name>maximum</name> 
       <value>5</value> 
      </parameter> 
      <parameter> 
       <name>MV_scale</name> 
       <value>1.0</value> 
      </parameter> 
      <parameter> 
       <name>output_scale</name> 
       <value>0.012820</value> 
      </parameter> 
      <parameter> 
       <name>sampletime</name> 
       <value>0.001</value> 
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      </parameter> 
     </parameters> 
    </cagent> 
    <cagent> 
     <type>PathFromFile</type> 
     <name>pathFromFile</name> 
    </cagent> 
   </cagency> 
   <connections> 
    <connection> 
     <from>startbutton</from> 
     <to>pathFromFile.startbutton</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>pathFromFile.stopbutton</to> 
    </connection> 
    <connection> 
     <from>startbutton</from> 
     <to>pidController.startbutton</to> 
    </connection> 
    <connection> 
     <from>stopbutton</from> 
     <to>pidController.stopbutton</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>pidController.MV1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>pidController.MV2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>pidController.MV3</to> 
    </connection> 
    <connection> 
     <from>Z1</from> 
     <to>pathFromFile.Z1</to> 
    </connection> 
    <connection> 
     <from>Z2</from> 
     <to>pathFromFile.Z2</to> 
    </connection> 
    <connection> 
     <from>Z3</from> 
     <to>pathFromFile.Z3</to> 
    </connection> 
    <connection> 
     <from>pathFromFile.Z1ref</from> 
     <to>pidController.SP1</to> 
    </connection> 
    <connection> 
     <from>pathFromFile.Z2ref</from> 
     <to>pidController.SP2</to> 
    </connection> 
    <connection> 
     <from>pathFromFile.Z3ref</from> 
     <to>pidController.SP3</to> 
    </connection> 
    <connection> 
     <from>pidController.output1</from> 
     <to>voltage1</to> 
    </connection> 
    <connection> 
     <from>pidController.output2</from> 
     <to>voltage2</to> 
    </connection> 
    <connection> 
     <from>pidController.output3</from> 
     <to>voltage3</to> 
    </connection> 
    <connection> 
     <from>pidController.error1</from> 
     <to>error1</to> 
    </connection> 
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    <connection> 
     <from>pidController.error2</from> 
     <to>error2</to> 
    </connection> 
    <connection> 
     <from>pidController.error3</from> 
     <to>error3</to> 
    </connection> 
   </connections> 
  </composite> 
 </implementation> 
</cagentclass> 
 
 
E.21 The PathFromFile agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>PathFromFile</name> 
 <include><![CDATA["PATHHEAD.H"]]></include> 
 <include><![CDATA[<cmath>]]></include>  
 <include><![CDATA[<stdio.h>]]></include>  
 <interface> 
  <ports> 
  
   <input> 
    <type>real</type> 
    <name>startbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>Z1ref</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>Z2ref</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>Z3ref</name> 
   </output> 
  </ports> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>boolean</type> 
     <name>canAktive</name> 
    </state> 
    <state> 
     <type>boolean</type> 
     <name>AtStartPos</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>Z1step</name> 
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    </state> 
    <state> 
     <type>real</type> 
     <name>Z2step</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>Z3step</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>BWrad</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s1y3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>s2y3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>y3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>sampletime</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>BW</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>Z1curr</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>Z2curr</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>Z3curr</name> 
    </state> 
   </states> 
    <start><![CDATA[  
{ 
 sampletime = 0.001; 
 BW = 1; 
 
 BWrad = BW*2*3.1415926536; 
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 canAktive = false; 
 AtStartPos = false; 
 
 FILE *fp; 
 char Dummy[200]; 
 float f1, f2, f3; 
 int FilPos; 
 
 if((fp = fopen("path.egl", "r"))==NULL) 
 { 
  printf("Cannnot open file..."); 
  exit(1); 
 } 
 
 // get the number of samples and make the arrays 
 
 fgets(Dummy, 200, fp); 
 fgets(Dummy, 200, fp); 
 fgets(Dummy, 200, fp); 
 FilPos = ftell(fp); 
 fseek(fp, FilPos + 14, SEEK_SET); 
 fscanf(fp,"%u", &NrSamples); 
 fgets(Dummy, 200, fp); 
 
 RefArrayZ1 = new double[NrSamples]; 
 RefArrayZ2 = new double[NrSamples]; 
 RefArrayZ3 = new double[NrSamples]; 
 
 
 for(index=0;index<NrSamples;index++) 
 { 
  fscanf(fp,"%f %f %f", &f1, &f2, &f3); 
  RefArrayZ1[index] = f1; 
  RefArrayZ2[index] = f2; 
  RefArrayZ3[index] = f3; 
 } 
 
 fclose(fp); 
 index = 0; 
} 
   ]]></start> 
    <initialize><![CDATA[  
{ 
 Z1step = RefArrayZ1[0] - Z1; 
 Z2step = RefArrayZ2[0] - Z2; 
 Z3step = RefArrayZ3[0] - Z3; 
 
 Z1curr = Z1; 
 Z2curr = Z2; 
 Z3curr = Z3; 
 
 y1 = 0.0; 
 y2 = 0.0; 
 y3 = 0.0; 
 
 
 if((fabs(Z1step) <0.002)&&(fabs(Z2step) <0.002)&&(fabs(Z3step) <0.002)) 
  AtStartPos = true; 
 else 
  AtStartPos = false; 
 
 
 Z1ref = Z1; 
 Z2ref = Z2; 
 Z3ref = Z3; 
 index = 0; 
} 
    ]]></initialize> 
 
    <finalize><![CDATA[  
{ 
 canAktive = false; 
} 
    ]]></finalize> 
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   <activation><![CDATA[  
{ 
  
  return canAktive; 
} 
   ]]></activation> 
   <calculate><![CDATA[  
{ 
 if(AtStartPos) 
 { 
  if(index<NrSamples) 
  { 
   Z1ref = RefArrayZ1[index]; 
   Z2ref = RefArrayZ2[index]; 
   Z3ref = RefArrayZ3[index]; 
   index++; 
  } 
  else 
  { 
   Z1ref = RefArrayZ1[index-1]; 
   Z2ref = RefArrayZ2[index-1]; 
   Z3ref = RefArrayZ3[index-1]; 
  } 
 } 
 else 
 { 
  s2y1 = BWrad*BWrad*(Z1step - y1) - 1.4142*BWrad*s1y1; 
  s1y1 = s1y1 + s2y1*sampletime; 
  y1 = y1 + s1y1*sampletime;          
 
  s2y2 = BWrad*BWrad*(Z2step - y2) - 1.4142*BWrad*s1y2; 
  s1y2 = s1y2 + s2y2*sampletime; 
  y2 = y2 + s1y2*sampletime;          
  
  s2y3 = BWrad*BWrad*(Z3step - y3) - 1.4142*BWrad*s1y3; 
  s1y3 = s1y3 + s2y3*sampletime; 
  y3 = y3 + s1y3*sampletime;          
 
  Z1ref = Z1curr + y1; 
  Z2ref = Z2curr + y2; 
  Z3ref = Z3curr + y3; 
 
  if((fabs(Z1 - RefArrayZ1[0]) <0.002)&&(fabs(Z2 - RefArrayZ2[0]) <0.002)&&(fabs(Z3 
- RefArrayZ3[0]) <0.002)) 
   AtStartPos = true;  
 
 } 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 if (startbutton == 1.0) 
  canAktive = true; 
 
 if (stopbutton == 1.0) 
  canAktive = false; 
} 
   ]]></update> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
 
E.22 The PID agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>PID</name> 
 <include><![CDATA[<cmath>]]></include> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
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    <name>startbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>stopbutton</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>SP1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>SP2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>SP3</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>MV1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>MV2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>MV3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>output1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>output2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>output3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>K</name> 
    <defaultvalue>10</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Td</name> 
    <defaultvalue>0.02</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>N</name> 
    <defaultvalue>10</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Ti</name> 
    <defaultvalue>1000</defaultvalue> 
   </parameterdef> 
   <parameterdef> 



Appendix E 

107 

    <type>real</type> 
    <name>minimum</name> 
    <defaultvalue>-5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>maximum</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>MV_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>output_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>sampletime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>boolean</type> 
     <name>canAktive</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>scaled_MV1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>scaled_MV2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>scaled_MV3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>factor</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uD1</name> 
    </state> 
 
    <state> 
     <type>real</type> 
     <name>uD2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uD3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output1</name> 
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    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError3</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
 canAktive = false; 
} 
  ]]></start> 
   <initialize><![CDATA[  
{ 
 prevError1=0.0; 
 prevError2=0.0; 
 prevError3=0.0; 
} 
  ]]></initialize> 
   <finalize><![CDATA[  
{ 
} 
  ]]></finalize> 
   <activation><![CDATA[  
{ 
  return canAktive; 
} 
  ]]></activation> 
   <calculate><![CDATA[ { 
 scaled_MV1 = MV_scale * MV1; 
 scaled_MV2 = MV_scale * MV2; 
 scaled_MV3 = MV_scale * MV3; 
 error1 = SP1 - scaled_MV1; 
 error2 = SP2 - scaled_MV2; 
 error3 = SP3 - scaled_MV3; 
 
 factor = 1 / ( sampletime + Td / N ); 
 
 uD1 = factor * (sampletime * K *error1 + Td  * K * (error1 - prevError1)  + Td * uD1 / N 
);  
 uD2 = factor * (sampletime * K *error2 + Td  * K * (error2 - prevError2)  + Td * uD2 / N 
);  
 uD3 = factor * (sampletime * K *error3 + Td  * K * (error3 - prevError3)  + Td * uD3 / N 
);  
 
 uI1 = uI1 + sampletime * uD1 / Ti ; 
 uI2 = uI2 + sampletime * uD2 / Ti ; 
 uI3 = uI3 + sampletime * uD3 / Ti ; 
 
 ideal_output1 = uI1 + uD1;  
 ideal_output2 = uI2 + uD2;  
 ideal_output3 = uI3 + uD3;  
 
 output1 = output_scale * ideal_output1; 
 output2 = output_scale * ideal_output2; 
 output3 = output_scale * ideal_output3; 
 
 if (output1<minimum) 
  output1=minimum; 
 if (output1>maximum) 
  output1=maximum; 
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 if (output2<minimum) 
  output2=minimum; 
 if (output2>maximum) 
  output2=maximum; 
 
 if (output3<minimum) 
  output3=minimum; 
 if (output3>maximum) 
  output3=maximum; 
 
 prevError1=error1; 
 prevError2=error2; 
 prevError3=error3; 
} 
   ]]></calculate> 
   <update><![CDATA[  
{ 
 if (startbutton == 1.0) 
  canAktive = true; 
 if (stopbutton == 1.0) 
  canAktive = false; 
 
 scaled_MV1 = MV_scale * MV1; 
 scaled_MV2 = MV_scale * MV2; 
 scaled_MV3 = MV_scale * MV3; 
 error1 = SP1 - scaled_MV1; 
 error2 = SP2 - scaled_MV2; 
 error3 = SP3 - scaled_MV3; 
} 
   ]]></update> 
  </elementary> 
 </implementation> 
</cagentclass> 
 
 
E.23 The HoldZero agent XML code 
 
<?xml version="1.0"?> 
<cagentclass xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="CagentSchema.xsd"> 
 <name>HoldZeroPID</name> 
 <include><![CDATA[<cmath>]]></include> 
 <interface> 
  <ports> 
   <input> 
    <type>real</type> 
    <name>Z1</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z2</name> 
   </input> 
   <input> 
    <type>real</type> 
    <name>Z3</name> 
   </input> 
   <output> 
    <type>real</type> 
    <name>output1</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>output2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>output3</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error1</name> 
   </output> 
   <output> 
    <type>real</type> 



Appendix E 

110 

    <name>error2</name> 
   </output> 
   <output> 
    <type>real</type> 
    <name>error3</name> 
   </output> 
  </ports> 
  <parameterdefs> 
   <parameterdef> 
    <type>real</type> 
    <name>K</name> 
    <defaultvalue>20</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Td</name> 
    <defaultvalue>0.02</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>N</name> 
    <defaultvalue>10</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>Ti</name> 
    <defaultvalue>1000</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>minimum</name> 
    <defaultvalue>-5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>maximum</name> 
    <defaultvalue>5.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>MV_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>output_scale</name> 
    <defaultvalue>1.0</defaultvalue> 
   </parameterdef> 
   <parameterdef> 
    <type>real</type> 
    <name>sampletime</name> 
    <defaultvalue>0.001</defaultvalue> 
   </parameterdef> 
  </parameterdefs> 
 </interface> 
 <implementation> 
  <elementary> 
   <states> 
    <state> 
     <type>real</type> 
     <name>scaled_MV1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>scaled_MV2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>scaled_MV3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>factor</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uD1</name> 
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    </state> 
 
    <state> 
     <type>real</type> 
     <name>uD2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uD3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>uI3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>ideal_output3</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError1</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError2</name> 
    </state> 
    <state> 
     <type>real</type> 
     <name>prevError3</name> 
    </state> 
   </states> 
   <start><![CDATA[  
{ 
} 
  ]]></start> 
   <initialize><![CDATA[  
{ 
 prevError1=0.0; 
 prevError2=0.0; 
 prevError3=0.0; 
} 
  ]]></initialize> 
   <finalize><![CDATA[  
{ 
} 
  ]]></finalize> 
   <activation><![CDATA[  
{ 
  return 1.0; 
} 
  ]]></activation> 
   <calculate><![CDATA[ { 
 scaled_MV1 = MV_scale * Z1; 
 scaled_MV2 = MV_scale * Z2; 
 scaled_MV3 = MV_scale * Z3; 
 error1 =  - scaled_MV1; 
 error2 =  - scaled_MV2; 
 error3 =  - scaled_MV3; 
 
 factor = 1 / ( sampletime + Td / N ); 
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 uD1 = factor * (sampletime * K *error1 + Td  * K * (error1 - prevError1)  + Td * uD1 / N 
);  
 uD2 = factor * (sampletime * K *error2 + Td  * K * (error2 - prevError2)  + Td * uD2 / N 
);  
 uD3 = factor * (sampletime * K *error3 + Td  * K * (error3 - prevError3)  + Td * uD3 / N 
);  
 
 uI1 = uI1 + sampletime * uD1 / Ti ; 
 uI2 = uI2 + sampletime * uD2 / Ti ; 
 uI3 = uI3 + sampletime * uD3 / Ti ; 
 
 ideal_output1 = uI1 + uD1;  
 ideal_output2 = uI2 + uD2;  
 ideal_output3 = uI3 + uD3;  
 
 output1 = output_scale * ideal_output1; 
 output2 = output_scale * ideal_output2; 
 output3 = output_scale * ideal_output3; 
 
 if (output1<minimum) 
  output1=minimum; 
 if (output1>maximum) 
  output1=maximum; 
 
 if (output2<minimum) 
  output2=minimum; 
 if (output2>maximum) 
  output2=maximum; 
 
 if (output3<minimum) 
  output3=minimum; 
 if (output3>maximum) 
  output3=maximum; 
 
 prevError1=error1; 
 prevError2=error2; 
 prevError3=error3; 
} 
   ]]></calculate> 
  </elementary> 
 </implementation> 
</cagentclass> 
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